亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Tourist arrival forecasting using feed search information

旅游 索引(排版) 计算机科学 中国 熵(时间箭头) 实证研究 运筹学 互联网 营销 滞后 业务 统计 地理 数学 量子力学 物理 万维网 考古 计算机网络
作者
Kaijian He,Qian Yang,Don Chi Wai Wu,Yingchao Zou
出处
期刊:Current Issues in Tourism [Informa]
卷期号:: 1-32
标识
DOI:10.1080/13683500.2023.2259573
摘要

ABSTRACTThe feed index is a weighted sum of the number of reactions (i.e. reading, comments, retweets, likes and dislikes, and so on.) that the content engine actively recommends and distributes to the users. It provides valuable information from big data on the Internet and high marketing value to Destination Marketing Organization as the content can be customized. A large-scale empirical study on the impact of the feed index on tourist arrival forecasting accuracy has been conducted, with a new approach proposed to incorporate the feed index into the tourist arrival forecasting model with higher forecasting accuracy. Firstly, the empirical results suggest that the feed index for different keywords reflects varying tourist preferences and has different impacts on tourist arrival movements, with variant lead-lag relationships. Secondly, the study shows that keywords need to be carefully selected based on theoretical analysis plus new methods such as entropy analysis. Therefore, it is proposed that entropy is employed to select the keywords and time lags, thus helping improve forecasting accuracy.KEYWORDS: Tourist arrival forecastingfeed indexARMAXseasonal ARMAX Disclosure statementAll authors had equal contribution to this research. No potential conflict of interest was reported by the authors.Notes1 https://index.baidu.com/v2/main/index.html#/help?anchor=pdescAdditional informationFundingThe work described in this paper was supported by a grant from National Natural Science Foundation of China (grant number 72271089), Hunan Provincial Natural Science Foundation of China (grant number 2022JJ30401) and partially sponsored by a scholarship from the Macao Foundation.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情的鹭洋完成签到,获得积分10
17秒前
yuanling完成签到 ,获得积分10
26秒前
29秒前
吴迪发布了新的文献求助10
34秒前
田様应助苏亚婷采纳,获得10
46秒前
闫闫完成签到 ,获得积分10
1分钟前
Nancy0818完成签到 ,获得积分10
1分钟前
乐乐应助lalkiii采纳,获得10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
1分钟前
lalkiii发布了新的文献求助10
1分钟前
2分钟前
2分钟前
大模型应助杨惠子采纳,获得10
2分钟前
2分钟前
杨惠子发布了新的文献求助10
2分钟前
杨惠子完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
Hello应助科研通管家采纳,获得10
3分钟前
菜菜完成签到 ,获得积分10
4分钟前
5分钟前
苏亚婷发布了新的文献求助10
5分钟前
点点点完成签到 ,获得积分10
5分钟前
hahasun发布了新的文献求助10
6分钟前
6分钟前
斯文败类应助苏亚婷采纳,获得10
6分钟前
6分钟前
怕孤独的海秋完成签到,获得积分10
6分钟前
6分钟前
7分钟前
科研通AI2S应助吴迪采纳,获得10
7分钟前
小蘑菇应助怕孤独的海秋采纳,获得10
7分钟前
7分钟前
7分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5845406
求助须知:如何正确求助?哪些是违规求助? 6202404
关于积分的说明 15616421
捐赠科研通 4962230
什么是DOI,文献DOI怎么找? 2675328
邀请新用户注册赠送积分活动 1620094
关于科研通互助平台的介绍 1575413