GFFT: Global-local feature fusion transformers for facial expression recognition in the wild

人工智能 计算机科学 面部表情 稳健性(进化) 模式识别(心理学) 融合 突出 地标 计算机视觉 面部识别系统 语言学 生物化学 基因 哲学 化学
作者
Rui Xu,Aibin Huang,Yuanjing Hu,Xibo Feng
出处
期刊:Image and Vision Computing [Elsevier BV]
卷期号:139: 104824-104824 被引量:8
标识
DOI:10.1016/j.imavis.2023.104824
摘要

Facial expression recognition in the wild has become more challenging owing to various unconstrained conditions, such as facial occlusion and pose variation. Previous methods usually recognize expressions by holistic or relatively coarse local methods, but only capture limited features and are susceptible to be influenced. In this paper, we propose the Global–local Feature Fusion Transformers (GFFT) that is centered on cross-patch communication between features by self-attentive fusion. This method solves the problems of facial occlusion and pose variation effectively. Firstly, the Global Contextual Information Perception (GCIP) is designed to fuse global and local features, learning the relationship between them. Subsequently, the Facial Salient Feature Perception (FSFP) module is proposed to guide the fusion features to understand the key regions of facial features using facial landmark features to further capture face-related salient features. In addition, the Multi-scale Feature Fusion (MFF) is constructed to combine different stages of fusion features to reduce the sensitivity of the deep network to facial occlusion. Extensive experiments show that our GFFT outperforms existing state-of-the-art methods with 92.05% on RAF-DB, 67.46% on AffectNet-7, 63.62% on AffectNet-8, and 91.04% on FERPlus, demonstrating its effectiveness and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助hyr采纳,获得10
刚刚
楼一笑发布了新的文献求助10
1秒前
zzzzz发布了新的文献求助10
2秒前
科研通AI5应助想要赚大钱采纳,获得10
2秒前
多宝鱼完成签到,获得积分10
3秒前
小二郎应助jimskylxk采纳,获得10
3秒前
javalin完成签到,获得积分20
3秒前
3秒前
Walter完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
Ava应助LY采纳,获得10
6秒前
斯文败类应助云起龙都采纳,获得10
6秒前
加油发布了新的文献求助10
6秒前
7秒前
pallts发布了新的文献求助10
8秒前
9秒前
今后应助berg采纳,获得10
9秒前
10秒前
小蘑菇应助罐罐采纳,获得10
10秒前
10秒前
10秒前
dnmd发布了新的文献求助10
11秒前
Walter发布了新的文献求助10
11秒前
11秒前
11秒前
在水一方应助Zhai采纳,获得10
12秒前
云起龙都完成签到,获得积分10
12秒前
大力信封完成签到,获得积分10
13秒前
14秒前
you翅膀的鱼完成签到,获得积分10
14秒前
15秒前
Hollen发布了新的文献求助10
15秒前
旺仔冰激凌完成签到,获得积分10
15秒前
rong完成签到 ,获得积分10
16秒前
气味发布了新的文献求助10
16秒前
16秒前
SnaiLinsist发布了新的文献求助10
17秒前
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787003
求助须知:如何正确求助?哪些是违规求助? 3332619
关于积分的说明 10256691
捐赠科研通 3047851
什么是DOI,文献DOI怎么找? 1672796
邀请新用户注册赠送积分活动 801549
科研通“疑难数据库(出版商)”最低求助积分说明 760271