亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiation pneumonia predictive model for radiotherapy in esophageal carcinoma patients

深度学习 放射治疗 接收机工作特性 人工智能 预测建模 放射治疗计划 医学 机器学习 食管癌 计算机科学 癌症 放射科 内科学
作者
Liming Sheng,Lei Zhuang,Jing Yang,Danhong Zhang,Ying Chen,Jie Zhang,Shengye Wang,Guoping Shan,Xianghui Du,Xue Bai
出处
期刊:BMC Cancer [BioMed Central]
卷期号:23 (1) 被引量:10
标识
DOI:10.1186/s12885-023-11499-6
摘要

Abstract Background The machine learning models with dose factors and the deep learning models with dose distribution matrix have been used to building lung toxics models for radiotherapy and achieve promising results. However, few studies have integrated clinical features into deep learning models. This study aimed to explore the role of three-dimension dose distribution and clinical features in predicting radiation pneumonitis (RP) in esophageal cancer patients after radiotherapy and designed a new hybrid deep learning network to predict the incidence of RP. Methods A total of 105 esophageal cancer patients previously treated with radiotherapy were enrolled in this study. The three-dimension (3D) dose distributions within the lung were extracted from the treatment planning system, converted into 3D matrixes and used as inputs to predict RP with ResNet. In total, 15 clinical factors were normalized and converted into one-dimension (1D) matrixes. A new prediction model (HybridNet) was then built based on a hybrid deep learning network, which combined 3D ResNet18 and 1D convolution layers. Machine learning-based prediction models, which use the traditional dosiomic factors with and without the clinical factors as inputs, were also constructed and their predictive performance compared with that of HybridNet using tenfold cross validation. Accuracy and area under the receiver operator characteristic curve (AUC) were used to evaluate the model effect. DeLong test was used to compare the prediction results of the models. Results The deep learning-based model achieved superior prediction results compared with machine learning-based models. ResNet performed best in the group that only considered dose factors (accuracy, 0.78 ± 0.05; AUC, 0.82 ± 0.25), whereas HybridNet performed best in the group that considered both dose factors and clinical factors (accuracy, 0.85 ± 0.13; AUC, 0.91 ± 0.09). HybridNet had higher accuracy than that of Resnet ( p = 0.009). Conclusion Based on prediction results, the proposed HybridNet model could predict RP in esophageal cancer patients after radiotherapy with significantly higher accuracy, suggesting its potential as a useful tool for clinical decision-making. This study demonstrated that the information in dose distribution is worth further exploration, and combining multiple types of features contributes to predict radiotherapy response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助BakerStreet采纳,获得10
39秒前
wish完成签到 ,获得积分10
40秒前
56秒前
包容哑铃发布了新的文献求助10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
hasang发布了新的文献求助10
1分钟前
乐乐应助hasang采纳,获得10
2分钟前
冷静尔芙完成签到,获得积分10
2分钟前
2分钟前
456完成签到,获得积分20
2分钟前
2分钟前
456发布了新的文献求助10
2分钟前
wanci应助科研通管家采纳,获得10
3分钟前
4分钟前
hasang发布了新的文献求助10
4分钟前
Kevin完成签到 ,获得积分10
4分钟前
4分钟前
hasang完成签到,获得积分10
4分钟前
4分钟前
努力勤奋发布了新的文献求助10
5分钟前
努力勤奋完成签到,获得积分10
5分钟前
归尘应助科研通管家采纳,获得10
5分钟前
归尘应助科研通管家采纳,获得10
5分钟前
clearsky应助科研通管家采纳,获得10
5分钟前
归尘应助科研通管家采纳,获得30
5分钟前
归尘应助科研通管家采纳,获得10
5分钟前
英俊的铭应助科研通管家采纳,获得10
5分钟前
打打应助科研通管家采纳,获得10
5分钟前
大个应助高浩天采纳,获得10
5分钟前
umesh发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
高浩天发布了新的文献求助10
6分钟前
高浩天完成签到,获得积分20
6分钟前
6分钟前
sfwrbh完成签到,获得积分20
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Parenchymal volume and functional recovery after clamped partial nephrectomy: potential discrepancies 300
Optimization and Learning via Stochastic Gradient Search 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4682272
求助须知:如何正确求助?哪些是违规求助? 4057800
关于积分的说明 12545511
捐赠科研通 3753232
什么是DOI,文献DOI怎么找? 2072889
邀请新用户注册赠送积分活动 1101890
科研通“疑难数据库(出版商)”最低求助积分说明 981210