AFU-Net: A Novel U-Net Network for Rice Leaf Disease Segmentation

分割 残余物 编码器 交叉口(航空) 特征(语言学) 计算机科学 人工智能 模式识别(心理学) 网(多面体) 特征提取 图层(电子) 像素 图像分割 数据挖掘 数学 算法 工程类 哲学 航空航天工程 几何学 操作系统 语言学 有机化学 化学
作者
Le Yang,Huanhuan Zhang,Zhengkang Zuo,Jun Peng,Yu Xiaoyun,Huibin Long,Yuanjun Liao
出处
期刊:Applied Engineering in Agriculture [American Society of Agricultural and Biological Engineers]
卷期号:39 (5): 519-528 被引量:2
标识
DOI:10.13031/aea.15581
摘要

Highlights The attention mechanism enhances the ability of the model to learn specific semantic information in encoder. The redesigned residual structure deepens the network while reducing the number of parameters. The feature extraction module and feature fusion module obtain richer boundary feature information and effectively integrate output results from different levels. The mIoU, mPA, and Precision values of AFU-Net in the self-built dataset are 87.25%, 92.23%, and 99.67%, respectively. Abstract. Rice diseases adversely affect rice growth and yield. Precise spot segmentation helps to assess the severity of the disease so that appropriate control measures can be taken. In this article, we propose a segmentation method called AFU-Net for rice leaf diseases, and its performance is verified through experiments. Based on the traditional UNet, this method incorporates an attention mechanism, a residual module and a feature fusion module (FFM). The attention mechanism is embedded in skip connections, which enhances the learning of particular semantic features in the encoder layer. In addition, the residual module is integrated into the decoder layer, which deepens the network and enables it to extract richer semantic information. The proposed FFM structure effectively enhances the learning of boundary information and local detail features. The experimental results show that the mean intersection over union (mIoU), mean pixel accuracy (mPA) and Precision of the proposed model on the self-built rice leaf disease segmentation dataset are 87.25%, 92.23%, and 99.67%, respectively. All three evaluation indexes were improved over the control group, while the proposed model had the lowest number of parameters and displayed a good segmentation effect for smaller disease points and disease parts with less obvious characteristics. Keywords: Attention mechanism, Feature fusion module, Residual module, Rice leaves, UNet model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七栀发布了新的文献求助10
刚刚
喜洋洋完成签到,获得积分20
刚刚
youngyang完成签到 ,获得积分10
刚刚
坦率纸飞机完成签到,获得积分10
1秒前
兴奋小丸子完成签到,获得积分10
2秒前
与可完成签到,获得积分10
2秒前
yang完成签到,获得积分20
3秒前
积极紫翠完成签到,获得积分10
3秒前
小二郎应助JLLi采纳,获得10
3秒前
hhf发布了新的文献求助10
3秒前
甜美乐松关注了科研通微信公众号
3秒前
AAAAA完成签到,获得积分10
3秒前
青柠完成签到,获得积分10
4秒前
大圣完成签到,获得积分20
4秒前
逢强必赢完成签到,获得积分10
4秒前
4秒前
4秒前
zhanjl13完成签到,获得积分10
4秒前
jinboyuan完成签到,获得积分10
4秒前
唐宋完成签到,获得积分10
5秒前
科研蜗牛完成签到,获得积分10
5秒前
水濑心源完成签到,获得积分10
5秒前
pppyrus完成签到,获得积分20
6秒前
希望天下0贩的0应助sg采纳,获得10
7秒前
7秒前
橙子完成签到 ,获得积分10
8秒前
8秒前
沉甸甸完成签到,获得积分10
8秒前
no1isme完成签到 ,获得积分10
8秒前
9秒前
xrkxrk完成签到 ,获得积分0
9秒前
9秒前
小吴同学来啦完成签到,获得积分10
9秒前
dmoney完成签到,获得积分10
9秒前
陈龙艳完成签到,获得积分10
10秒前
10秒前
10秒前
大憨憨完成签到 ,获得积分10
10秒前
burn完成签到,获得积分10
11秒前
12秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4061515
求助须知:如何正确求助?哪些是违规求助? 3600186
关于积分的说明 11432873
捐赠科研通 3323783
什么是DOI,文献DOI怎么找? 1827470
邀请新用户注册赠送积分活动 897942
科研通“疑难数据库(出版商)”最低求助积分说明 818774