Strategic Content Generation and Monetization in Financial Social Media

货币化 内容(测量理论) 社会化媒体 业务 财务 经济 计算机科学 万维网 宏观经济学 数学 数学分析
作者
Ding Li,Khim Yong Goh,Cheng-Suang Heng
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:1
标识
DOI:10.2139/ssrn.4569173
摘要

Financial social media platforms, which rely on social media analysts (SMAs) to contribute content to investors, have emerged as a crucial channel for investors to gain access to financial information and for SMAs to monetize their content. However, we still have a limited understanding of the factors that affect how content is generated and monetized in financial social media platforms. This study focuses on the novel role of investors' preferences for free/paid content and its sentiment, and investigates the extent to which SMAs exhibit strategic content generation and monetization behaviors by catering to and trading off the investors' preferences. We also evaluate the underlying mechanisms and implications of such strategic behaviors. Utilizing a dataset from a financial social media platform based in China, we propose a Bayesian empirical model to jointly analyze the investor's demand and SMAs' strategic supply of financial social media content. The model estimation results show that SMAs cater to investors', especially paid subscribers', preferences in their content generation, such that their strategic behaviors account for 46.20% (24.50%) of the variation in SMAs' generation decision for free (paid) content sentiment. In addition, a SMA is more likely to produce paid content when the expected free readership increases and is less likely to do so when the expected paid subscriptions increase – evidence that SMAs do balance the preferences of different investors when monetizing content. We find that SMAs are strategic in acquiring readers via their content monetization decisions and retaining subscribers via their content generation decisions. Importantly, we uncover that the orientation of a SMA's strategic catering behavior is driven by the audience composition effect. Our study provides new empirical evidence, associated theoretical explanations for the results, and a practical illustration of an approach to reduce the potential confirmation bias of investors who may favor information from some SMAs that are prone to strategic catering behaviors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
pan完成签到,获得积分10
刚刚
共享精神应助一二采纳,获得10
1秒前
123jopop完成签到,获得积分10
1秒前
aaawen完成签到,获得积分20
1秒前
misalia发布了新的文献求助10
1秒前
1秒前
曾永佳发布了新的文献求助10
1秒前
树叶有专攻完成签到,获得积分10
2秒前
852应助情绪总在阴雨天采纳,获得10
2秒前
英姑应助chrisio采纳,获得30
2秒前
神奇宝贝完成签到,获得积分10
3秒前
恒星七纪发布了新的文献求助10
3秒前
冷静发布了新的文献求助10
4秒前
会游泳的鱼完成签到,获得积分10
4秒前
5秒前
天真友易完成签到,获得积分20
5秒前
科研八戒发布了新的文献求助10
5秒前
WQ发布了新的文献求助20
6秒前
爆米花应助哈哈采纳,获得10
6秒前
沈呆呆发布了新的文献求助100
6秒前
小王完成签到,获得积分10
6秒前
6秒前
梅七应助老实曼香采纳,获得10
7秒前
7秒前
天天快乐应助开心的雁芙采纳,获得10
7秒前
lxlcx应助危机的纸飞机采纳,获得20
8秒前
爆米花应助Sunshine采纳,获得10
8秒前
恒星七纪完成签到,获得积分10
8秒前
果子应助chemier027采纳,获得10
8秒前
nenoaowu发布了新的文献求助30
8秒前
Ankher发布了新的文献求助300
9秒前
9秒前
9秒前
你不知道完成签到 ,获得积分10
9秒前
挺喜欢你发布了新的文献求助20
10秒前
liunerd发布了新的文献求助10
10秒前
Till完成签到 ,获得积分10
11秒前
11完成签到,获得积分10
11秒前
22222发布了新的文献求助10
12秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Knowledge management in the fashion industry 300
The world according to Garb 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816509
求助须知:如何正确求助?哪些是违规求助? 3359946
关于积分的说明 10406042
捐赠科研通 3078020
什么是DOI,文献DOI怎么找? 1690472
邀请新用户注册赠送积分活动 813786
科研通“疑难数据库(出版商)”最低求助积分说明 767857