材料科学
石墨烯
铁电性
负阻抗变换器
光电子学
晶体管
量子电容
场效应晶体管
缩放比例
纳米技术
电压
物理
量子力学
电压源
几何学
数学
电介质
作者
Khalil Tamersit,Mohammad Hossein Moaiyeri,Mohammad Khaleqi Qaleh Jooq
出处
期刊:Nanotechnology
[IOP Publishing]
日期:2022-08-10
卷期号:33 (46): 465204-465204
被引量:10
标识
DOI:10.1088/1361-6528/ac8883
摘要
In this paper, an ultrascaled ballistic graphene nanoribbon field-effect transistor (GNRFET) endowed with a compound double-gate based on metal-ferroelectric-metal (MFM) structure is proposed to overcome the limitations encountered with its conventional counterpart. The ballistic transistor is computationally investigated by solving self-consistently the non-equilibrium Green's function formalism and the Poisson solver in conjunction with the Landau-Khalatnikov equation. The numerical investigation has included the ferroelectric-induced amplified internal metal voltage, the role of the ferroelectric thickness in boosting the device performance, the assessment of the switching and subthreshold performance, and the analysis of the FE-GNRFET scaling capability. The simulations revealed that the MFM-based gate can significantly boost the performance of GNRFETs, including the switching behavior, the on-current, the off-current, the current ratio, the swing factor, the intrinsic delay, and the scaling capability. More importantly, the proposed MFM GNRFET was found able to provide sub-thermionic subthreshold swing even with sub-10 nm gate lengths, which is very promising for low-power applications. The obtained results indicate that the MFM-based gating approach can give new impulses to the GNRFET technology.
科研通智能强力驱动
Strongly Powered by AbleSci AI