M6A-BERT-Stacking: A Tissue-Specific Predictor for Identifying RNA N6-Methyladenosine Sites Based on BERT and Stacking Strategy

堆积 计算生物学 核糖核酸 计算机科学 N6-甲基腺苷 生物 编码器 人工智能 DNA 遗传学 化学 基因 甲基化 有机化学 甲基转移酶 操作系统
作者
Qianyue Li,Xin Cheng,Chen Song,Taigang Liu
出处
期刊:Symmetry [Multidisciplinary Digital Publishing Institute]
卷期号:15 (3): 731-731 被引量:12
标识
DOI:10.3390/sym15030731
摘要

As the most abundant RNA methylation modification, N6-methyladenosine (m6A) could regulate asymmetric and symmetric division of hematopoietic stem cells and play an important role in various diseases. Therefore, the precise identification of m6A sites around the genomes of different species is a critical step to further revealing their biological functions and influence on these diseases. However, the traditional wet-lab experimental methods for identifying m6A sites are often laborious and expensive. In this study, we proposed an ensemble deep learning model called m6A-BERT-Stacking, a powerful predictor for the detection of m6A sites in various tissues of three species. First, we utilized two encoding methods, i.e., di ribonucleotide index of RNA (DiNUCindex_RNA) and k-mer word segmentation, to extract RNA sequence features. Second, two encoding matrices together with the original sequences were respectively input into three different deep learning models in parallel to train three sub-models, namely residual networks with convolutional block attention module (Resnet-CBAM), bidirectional long short-term memory with attention (BiLSTM-Attention), and pre-trained bidirectional encoder representations from transformers model for DNA-language (DNABERT). Finally, the outputs of all sub-models were ensembled based on the stacking strategy to obtain the final prediction of m6A sites through the fully connected layer. The experimental results demonstrated that m6A-BERT-Stacking outperformed most of the existing methods based on the same independent datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣欣杨完成签到,获得积分20
1秒前
Narcissus153完成签到,获得积分10
1秒前
Orange应助qtr采纳,获得10
3秒前
3秒前
桃花不用开了完成签到 ,获得积分10
4秒前
峰宝宝完成签到,获得积分10
5秒前
yumeng发布了新的文献求助10
6秒前
10秒前
海慕云完成签到,获得积分10
10秒前
不渝发布了新的文献求助10
10秒前
1111完成签到 ,获得积分10
12秒前
12秒前
13秒前
科研通AI5应助vivi采纳,获得10
14秒前
14秒前
遇上就这样吧应助念念采纳,获得10
16秒前
weizheng完成签到,获得积分10
16秒前
17秒前
bkagyin应助Kuhaku采纳,获得10
18秒前
松风水月发布了新的文献求助30
19秒前
19秒前
永无终点完成签到,获得积分10
19秒前
无奈芮完成签到,获得积分10
19秒前
20秒前
老实的栾完成签到,获得积分10
21秒前
yumeng完成签到,获得积分10
21秒前
22秒前
22秒前
商毛毛发布了新的文献求助10
24秒前
晴天不下雨完成签到,获得积分10
24秒前
仔拎完成签到,获得积分10
24秒前
26秒前
栗子发布了新的文献求助10
26秒前
zhangshu发布了新的文献求助10
26秒前
27秒前
王王的苏发布了新的文献求助10
29秒前
FashionBoy应助apple_chan采纳,获得10
30秒前
科研通AI5应助贾舒涵采纳,获得10
32秒前
惊蛰完成签到,获得积分20
32秒前
斯文败类应助奔波儿灞采纳,获得10
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793506
求助须知:如何正确求助?哪些是违规求助? 3338452
关于积分的说明 10289653
捐赠科研通 3054952
什么是DOI,文献DOI怎么找? 1676211
邀请新用户注册赠送积分活动 804255
科研通“疑难数据库(出版商)”最低求助积分说明 761806