亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transfer learning for DL‐based Synthetic CT after reconstruction algorithm upgrade in a proton therapy clinic

工作流程 升级 学习迁移 计算机科学 人工智能 软件 图像质量 质子疗法 数据集 机器学习 剂量学 水准点(测量) 试验装置 医学物理学 算法 核医学 图像(数学) 医学 放射科 放射治疗 数据库 操作系统 大地测量学 地理 程序设计语言
作者
Arthur Galapon,Dirk Wagenaar,Johannes A. Langendijk,Stefan Both
出处
期刊:Medical Physics [Wiley]
卷期号:52 (7)
标识
DOI:10.1002/mp.17937
摘要

Abstract Background Synthetic computed tomography (sCT) images generated using deep learning (DL) methods enable the use of on‐board CBCT imaging systems for online adaptive proton therapy workflows. However, DL models are susceptible to data drifts, such as changes in the quality of the CBCT images due to software upgrades. Purpose This study aims to assess the effectiveness of transfer learning strategies in addressing changes in the input image quality and to evaluate the sustainability of potential sCT‐dependent workflows following CBCT software upgrades. Method Transfer learning strategies were utilized to re‐train two existing DL‐based sCT models (DCNN and cycleGAN). A dataset comprised 69 head and neck (HNC) patients with paired CBCT‐CT images acquired after an image reconstruction software upgrade were used for this study. 60 patients were used for training and validation, and the remaining 9 were reserved for testing. To assess the efficacy of transfer learning strategies, several transfer learning models (TL‐models) were trained using various subsets of data, ranging from 5 to 40 image pairs. Additionally, a post‐upgrade sCT (New(PU)) model was trained utilizing the complete set of 60 patients to benchmark the TL‐models to a post‐upgrade‐trained model. The synthetic CTs generated from the test set were evaluated using established image quality metrics. Furthermore, dosimetric accuracy was assessed using the patient's clinical treatment plan and our existing clinical NTCP models. Results Comparison of the average mean absolute error (MAE) between the baseline pre‐ and post‐upgrade (PU) models shows no significant difference. The baseline model exhibited an average MAE of 81.46 ± 49.0 HU and 86.25 ± 14.49 HU for DCNN and cycleGAN, respectively. The TL‐05 model demonstrated an average MAE of 69.85 ± 5.9 HU and 95.0 ± 10.95 HU, while the post‐upgrade new model had an average MAE of 74.4 ± 12.42 HU and 65.32 ± 10.36 HU for DCNN and cycleGAN, respectively. Additionally, dosimetric quantities showed no significant differences, with mean dose differences ranging from −0.98 ± 3.74% to 2.99 ± 4.74% for DCNN and −0.34 ± 5.45% to 3.15 ± 6.68% for cycleGAN, compared to the post‐upgrade new model. Evaluation of the difference between the normal tissue complication probability (∆NTCP) values between the verification CT (rCT) and post‐upgrade models showed minimal deviations ranging from −0.001% to −0.03% and 0.0006% to 0.0027% for Grade 2 or higher dysphagia, for DCNN and cycleGAN, respectively. Conclusion Transfer learning strategies, including fine‐tuning or freezing feature extraction layers, can minimize disruptions in sCT‐dependent workflows. Moreover, the small number of patients required to implement these methods can mitigate extensive downtime due to the limited availability of new data from post‐upgrade sources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
5秒前
松鼠完成签到,获得积分10
6秒前
7秒前
上官若男应助22222采纳,获得10
11秒前
南巷完成签到,获得积分10
14秒前
寒冷雨琴发布了新的文献求助10
18秒前
非泥完成签到,获得积分10
18秒前
赝品也烂漫完成签到,获得积分10
18秒前
jiafang完成签到,获得积分10
20秒前
Jero发布了新的文献求助10
21秒前
苯氮小羊完成签到,获得积分10
23秒前
27秒前
执着乐双完成签到,获得积分10
29秒前
乐乐乐乐乐乐应助淡水痕采纳,获得10
29秒前
Jero完成签到,获得积分10
31秒前
朴实行云完成签到 ,获得积分10
31秒前
32秒前
脑洞疼应助苯氮小羊采纳,获得10
34秒前
xxx完成签到,获得积分20
37秒前
干净的天与完成签到,获得积分10
38秒前
清脆的靖仇应助xxx采纳,获得10
41秒前
45秒前
47秒前
liufan完成签到 ,获得积分10
47秒前
JamesPei应助寒冷雨琴采纳,获得10
49秒前
Liufgui应助科研通管家采纳,获得30
51秒前
顾矜应助科研通管家采纳,获得10
51秒前
共享精神应助科研通管家采纳,获得10
51秒前
斯文败类应助科研通管家采纳,获得10
51秒前
mellow343发布了新的文献求助10
52秒前
周冯雪完成签到 ,获得积分10
1分钟前
1分钟前
Otter完成签到,获得积分10
1分钟前
1分钟前
yanxi完成签到,获得积分10
1分钟前
1分钟前
liuerlong完成签到 ,获得积分10
1分钟前
bkagyin应助炜豪采纳,获得10
1分钟前
bz应助高挑的牛青采纳,获得10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4060678
求助须知:如何正确求助?哪些是违规求助? 3599111
关于积分的说明 11431934
捐赠科研通 3323337
什么是DOI,文献DOI怎么找? 1827238
邀请新用户注册赠送积分活动 897896
科研通“疑难数据库(出版商)”最低求助积分说明 818666