滑倒
阴极
材料科学
微尺度化学
平面的
降级(电信)
锂(药物)
Crystal(编程语言)
复合材料
化学工程
纳米技术
化学
结构工程
电气工程
计算机科学
物理化学
数学教育
内分泌学
程序设计语言
工程类
计算机图形学(图像)
医学
数学
作者
Yuming Shu,Wengao Zhao,Hongyi Chen,Jing Lin,Di Chen,Jiangnan Huang,Fucheng Ren,Hanghang Lei,Qiuming Yan,Huinan Yu,Ke Du,Guorong Hu,Yanbing Cao,Zhongdong Peng,Xueyi Guo,Torsten Brezesinski,Xiaobo Ji,Xinming Fan,Yong Yang
标识
DOI:10.1002/anie.202512232
摘要
Abstract High‐capacity Co‐free Ni‐rich layered oxides are promising cathode materials for lithium‐based batteries, but they suffer from chemo–electro–mechanical instabilities. While single‐crystal morphologies reduce these issues, slipping, and microcracking persist during extended cycling, and the degradation mechanisms remain inadequately understood. Herein, we report on multi‐directional planar slipping and microcracking along the (003) and (100) planes in a single‐crystal LiNi 0.75 Mn 0.25 O 2 (LNM) cathode. According to the Darken–Gurry theory and formation energy in LNM, magnesium (Mg 2+ ) has been selected as the best pillaring element to strengthen the structural integrity and improve cycling stability. Notably, Li 0.99 Mg 0.01 Ni 0.75 Mn 0.25 O 2 (LMNM) achieves a capacity retention of 91% after 1000 cycles at 4.3 V operation against graphite by alleviating instability issues. We systematically unravel the pillaring effect, for the first time, from the quantum scale to the lattice level and from the microscale to the macroscopic level of the cathode particles, providing an in‐depth understanding of chemo–electro–mechanical degradation.
科研通智能强力驱动
Strongly Powered by AbleSci AI