Self-rectifying memristors based on epitaxial AlScN for neuromorphic computing

神经形态工程学 记忆电阻器 外延 材料科学 光电子学 纳米技术 计算机科学 计算机体系结构 电气工程 人工智能 工程类 人工神经网络 图层(电子)
作者
Z. Wang,Jiahe Zhang,Gang Jia,Weidong Sun,Saibo Yin,Jiangzhen Niu,John G. Bai,Chang Liu,Zhen Zhao,Xiaobing Yan
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:127 (4)
标识
DOI:10.1063/5.0251575
摘要

With the advancement of artificial intelligence, self-rectifying memristors have attracted increasing attention due to their potential for high-density integration in storage and neuromorphic computing systems. However, device stability still faces significant challenges. In this work, by using a CMOS-compatible process, we fabricate a high-performance memristor based on Pd/Al0.77Sc0.23N/TiN/Si devices on a silicon substrate. The crystallinity, surface roughness and ferroelectric properties of the epitaxially grown films were optimized by changing the doping ratio through dual-targeted nitrogen reactive magnetron sputtering. The device maintains good stability after 1000 consecutive scans of its I–V curve. The device can achieve switching ratios of about 100 and rectification ratios of 33. In addition, we simulated biological synapses and synaptic plasticity, such as long-term potentiation/inhibition, excitatory postsynaptic current, spike time-dependent plasticity (STDP), and double-pulse facilitation, and realized bidirectional control of conductance. More importantly, we designed a trajectory-based STDP circuit model by leveraging the amplitude characteristic of the device. This model was used to train spiking neural networks for the recognition of four flight markers: forward, landing, left turn, and right turn. Subsequently, the trained neural network was deployed on a drone, validating its effectiveness. This study demonstrates a feasible approach for the hardware implementation of unsupervised spiking neural networks based on AlScN ferroelectric memristors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
摆不烂发布了新的文献求助10
6秒前
lulu完成签到 ,获得积分10
7秒前
9秒前
10秒前
11秒前
lzcnextdoor发布了新的文献求助10
13秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
ee完成签到,获得积分10
15秒前
swi初发布了新的文献求助10
16秒前
努力发自然完成签到 ,获得积分10
16秒前
花痴的电灯泡完成签到,获得积分10
16秒前
17秒前
乐乐应助钱念波采纳,获得10
18秒前
Joanne完成签到 ,获得积分10
18秒前
lzcnextdoor完成签到,获得积分10
20秒前
26秒前
开放的听枫完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助20
29秒前
30秒前
重要手机发布了新的文献求助10
30秒前
向日葵发布了新的文献求助10
32秒前
33秒前
奋斗的凡完成签到 ,获得积分10
33秒前
zoudegui完成签到,获得积分10
34秒前
34秒前
Jasper应助科研通管家采纳,获得10
34秒前
SZ应助科研通管家采纳,获得10
34秒前
昏睡的蟠桃应助科研通管家采纳,获得200
34秒前
清脆惜寒应助科研通管家采纳,获得10
34秒前
带头大哥应助科研通管家采纳,获得200
34秒前
CipherSage应助科研通管家采纳,获得10
34秒前
popvich应助科研通管家采纳,获得20
35秒前
英姑应助科研通管家采纳,获得10
35秒前
Hello应助科研通管家采纳,获得10
35秒前
lgq12697应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
CipherSage应助科研通管家采纳,获得10
35秒前
小青椒应助科研通管家采纳,获得30
35秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Research Design: Qualitative, Quantitative, and Mixed Methods Approaches Sixth Edition 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4642098
求助须知:如何正确求助?哪些是违规求助? 4034083
关于积分的说明 12477604
捐赠科研通 3722274
什么是DOI,文献DOI怎么找? 2054438
邀请新用户注册赠送积分活动 1085535
科研通“疑难数据库(出版商)”最低求助积分说明 967418