Graphene-based phononic crystal lenses: Machine learning-assisted analysis and design

石墨烯 平面波展开法 材料科学 折射率 Crystal(编程语言) 计算 计算机科学 镜头(地质) 复合数 光学 光子晶体 人工智能 算法 复合材料 光电子学 纳米技术 物理 程序设计语言
作者
Liangteng Guo,Shaoyu Zhao,Jie Yang,S. Kitipornchai
出处
期刊:Ultrasonics [Elsevier]
卷期号:138: 107220-107220 被引量:10
标识
DOI:10.1016/j.ultras.2023.107220
摘要

The advance of artificial intelligence and graphene-based composites brings new vitality into the conventional design of acoustic lenses which suffers from high computation cost and difficulties in achieving precise desired refractive indices. This paper presents an efficient and accurate design methodology for graphene-based gradient-index phononic crystal (GGPC) lenses by combing theoretical formulations and machine learning methods. The GGPC lenses consist of two-dimensional phononic crystals possessing square unit cells with graphene-based composite inclusions. The plane wave expansion method is exploited to obtain the dispersion relations of elastic waves in the structures and then establish the data sets of the effective refractive indices in structures with different volume fractions of graphene fillers in composite materials and filling fractions of inclusions. Based on the database established by the theoretical formulation, genetic programming, a superior machine learning algorithm, is introduced to generate explicit mathematical expressions to predict the effective refractive indices under different structural information. The design of GGPC lenses is conducted with the assistance of the machine learning prediction model, and it will be illustrated by several typical design examples. The proposed design method offers high efficiency, accuracy as well as the ability to achieve inverse design of GGPC lenses, thus significantly facilitating the development of novel phononic crystal lenses and acoustic energy focusing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wait完成签到,获得积分10
刚刚
李爱国应助热心傲珊采纳,获得10
刚刚
寻道图强应助刻苦的小土豆采纳,获得100
1秒前
兰高锋发布了新的文献求助30
2秒前
打打应助Jiang采纳,获得10
4秒前
5秒前
刘言发布了新的文献求助20
6秒前
李文浩发布了新的文献求助10
6秒前
完美世界应助李123采纳,获得10
7秒前
8秒前
Hello应助CHANGJIAGAO采纳,获得10
8秒前
9秒前
10秒前
小二郎应助ProfYang采纳,获得10
10秒前
10秒前
时迁关注了科研通微信公众号
11秒前
11秒前
田様应助李文浩采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
万信心发布了新的文献求助10
14秒前
深情安青应助NIUB采纳,获得10
15秒前
15秒前
16秒前
紫瑕完成签到,获得积分10
16秒前
桐桐应助干净冰露采纳,获得10
17秒前
棠梨子完成签到,获得积分10
17秒前
伞镜完成签到 ,获得积分10
17秒前
陵墨影发布了新的文献求助10
17秒前
18秒前
zyc发布了新的文献求助10
18秒前
清风发布了新的文献求助10
19秒前
19秒前
搜集达人应助Re采纳,获得10
19秒前
SciGPT应助傻傻的哈密瓜采纳,获得10
20秒前
刘言发布了新的文献求助10
21秒前
21秒前
无极微光应助奋斗的珍采纳,获得20
21秒前
萝卜干完成签到,获得积分10
22秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533364
求助须知:如何正确求助?哪些是违规求助? 4621655
关于积分的说明 14579741
捐赠科研通 4561776
什么是DOI,文献DOI怎么找? 2499572
邀请新用户注册赠送积分活动 1479321
关于科研通互助平台的介绍 1450522