A lightweight network based on local-global feature fusion for real-time industrial invisible gas detection with infrared thermography

计算机科学 热成像 特征(语言学) 特征提取 气体泄漏 人工智能 目标检测 足迹 模式识别(心理学) 计算机视觉 红外线的 古生物学 语言学 哲学 有机化学 化学 物理 光学 生物
作者
Hao Yu,Jin Wang,Zhan Wang,Jingru Yang,Kaixiang Huang,Guodong Lu,Fengtao Deng,Zhaohui Yang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:152: 111138-111138
标识
DOI:10.1016/j.asoc.2023.111138
摘要

The detection of industrial invisible gas plays a vital role in preventing environmental pollution and fire accidents. Optical gas imaging (OGI) with infrared thermography is widely used in the field of gas leak monitoring and treatment by visualizing gases to quickly and accurately detect and locate the gas leak sources. However, this method still relies on manual visual inspection. Existing automatic visual gas detection methods suffer from insufficient gas feature extraction and high computational cost due to the indistinct gas features in thermal images. To address these problems, we propose a new lightweight network specialized for thermal gas feature extraction, namely GasViT, sufficiently extracting gas features at very low computational cost by local–global feature fusion. Specifically, two new feature extraction modules Multi-scale Fusion Feature Attention (MsFFA) and Multi-head Linear Self-attention (MhLSa) are proposed for GasViT. MsFFA enhances the gas local feature extraction ability by constructing multi-scale channel and spatial feature fusion maps, enabling the network to focus on more valid local information. MhLSa complements the gas global features with very low computational cost by efficiently encoding the global information of the image in terms of the innovative linear self-attention mechanism. Our experimental results on the self-made Industrial Invisible Gas (IIG) Dataset show GasViT achieves 82.7% mAP50, significantly outperforming the state-of-the-art lightweight networks. Moreover, GasViT achieves 33 FPS real-time detection with a running memory footprint of only 47.2 MB on edge computing devices, making it extremely suitable for portable and embedded detection devices than existing methods to cover gas leakage detection in complex and hazardous industrial scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林霖完成签到 ,获得积分10
3秒前
星辰大海应助坚定路人采纳,获得10
3秒前
ZM完成签到,获得积分10
4秒前
饭胖胖完成签到,获得积分10
4秒前
乌龙茶干完成签到,获得积分10
4秒前
5秒前
深情安青应助苦呀采纳,获得10
5秒前
健壮的尔烟完成签到,获得积分10
6秒前
7秒前
8秒前
9秒前
NexusExplorer应助科研通管家采纳,获得30
9秒前
严逍遥应助科研通管家采纳,获得10
9秒前
选择五个错四个关注了科研通微信公众号
9秒前
Owen应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
严逍遥应助科研通管家采纳,获得50
10秒前
ZM发布了新的文献求助10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
JamesPei应助ahq采纳,获得10
11秒前
哈基米德应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
栗子应助科研通管家采纳,获得20
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
姚夏完成签到 ,获得积分10
11秒前
11秒前
YUZI发布了新的文献求助10
12秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208817
求助须知:如何正确求助?哪些是违规求助? 4386099
关于积分的说明 13660012
捐赠科研通 4245182
什么是DOI,文献DOI怎么找? 2329154
邀请新用户注册赠送积分活动 1326960
关于科研通互助平台的介绍 1279228