A lightweight network based on local-global feature fusion for real-time industrial invisible gas detection with infrared thermography

计算机科学 热成像 特征(语言学) 特征提取 气体泄漏 人工智能 目标检测 足迹 模式识别(心理学) 计算机视觉 红外线的 古生物学 语言学 哲学 有机化学 化学 物理 光学 生物
作者
Hao Yu,Jin Wang,Zhan Wang,Jingru Yang,Kaixiang Huang,Guodong Lu,Fengtao Deng,Zhaohui Yang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:152: 111138-111138
标识
DOI:10.1016/j.asoc.2023.111138
摘要

The detection of industrial invisible gas plays a vital role in preventing environmental pollution and fire accidents. Optical gas imaging (OGI) with infrared thermography is widely used in the field of gas leak monitoring and treatment by visualizing gases to quickly and accurately detect and locate the gas leak sources. However, this method still relies on manual visual inspection. Existing automatic visual gas detection methods suffer from insufficient gas feature extraction and high computational cost due to the indistinct gas features in thermal images. To address these problems, we propose a new lightweight network specialized for thermal gas feature extraction, namely GasViT, sufficiently extracting gas features at very low computational cost by local–global feature fusion. Specifically, two new feature extraction modules Multi-scale Fusion Feature Attention (MsFFA) and Multi-head Linear Self-attention (MhLSa) are proposed for GasViT. MsFFA enhances the gas local feature extraction ability by constructing multi-scale channel and spatial feature fusion maps, enabling the network to focus on more valid local information. MhLSa complements the gas global features with very low computational cost by efficiently encoding the global information of the image in terms of the innovative linear self-attention mechanism. Our experimental results on the self-made Industrial Invisible Gas (IIG) Dataset show GasViT achieves 82.7% mAP50, significantly outperforming the state-of-the-art lightweight networks. Moreover, GasViT achieves 33 FPS real-time detection with a running memory footprint of only 47.2 MB on edge computing devices, making it extremely suitable for portable and embedded detection devices than existing methods to cover gas leakage detection in complex and hazardous industrial scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
体贴皮带完成签到 ,获得积分10
2秒前
敏锐的辣椒投手完成签到,获得积分10
3秒前
6秒前
2023204306324完成签到,获得积分20
7秒前
8秒前
9秒前
12秒前
陈HIAHIA发布了新的文献求助10
12秒前
YY发布了新的文献求助10
14秒前
兔子发布了新的文献求助10
16秒前
hjhfjjf发布了新的文献求助10
17秒前
细心夏瑶完成签到,获得积分10
17秒前
可爱的函函应助林一木采纳,获得10
18秒前
积极钧完成签到,获得积分10
21秒前
24秒前
26秒前
Slailt发布了新的文献求助10
28秒前
思源应助YY采纳,获得10
31秒前
英姑应助Ray采纳,获得10
32秒前
林一木发布了新的文献求助10
32秒前
yyzhou应助星空采纳,获得20
33秒前
斯文败类应助科研通管家采纳,获得10
33秒前
脑洞疼应助科研通管家采纳,获得10
33秒前
华仔应助科研通管家采纳,获得10
33秒前
33秒前
完美世界应助科研通管家采纳,获得10
34秒前
李爱国应助科研通管家采纳,获得10
34秒前
FashionBoy应助科研通管家采纳,获得10
34秒前
SciGPT应助科研通管家采纳,获得10
34秒前
爆米花应助科研通管家采纳,获得10
34秒前
桐桐应助科研通管家采纳,获得10
34秒前
汉堡包应助科研通管家采纳,获得10
34秒前
CodeCraft应助科研通管家采纳,获得10
34秒前
JamesPei应助科研通管家采纳,获得10
34秒前
领导范儿应助科研通管家采纳,获得10
34秒前
34秒前
35秒前
35秒前
上官若男应助科研通管家采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4760632
求助须知:如何正确求助?哪些是违规求助? 4101419
关于积分的说明 12690699
捐赠科研通 3816853
什么是DOI,文献DOI怎么找? 2106980
邀请新用户注册赠送积分活动 1131579
关于科研通互助平台的介绍 1010383