亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring the potential of visual tracking and counting for trees infected with pine wilt disease based on improved YOLOv5 and StrongSORT algorithm

枯萎病 跟踪(教育) 算法 人工智能 计算机视觉 计算机科学 数学 生物 园艺 心理学 教育学
作者
Xinquan Ye,Jie Pan,Fan Shao,Gaosheng Liu,Jiayi Lin,Dongxiao Xu,Jia Liu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:218: 108671-108671 被引量:9
标识
DOI:10.1016/j.compag.2024.108671
摘要

Pine wilt disease (PWD) has been consistently recognized as one of the most catastrophic forest diseases in China over the past four decades. Accurate identification and timely removal of infected pine trees are vital for controlling the disease spread. However, previous studies about the identification of PWD-infected trees still relied on traditional machine learning methods, with static imagery being the predominant data form utilized. Due to diverse forest environments, there are significant errors in wide-range identification and the collaborative adaptation capability between multiple algorithms is suboptimal. Real-time dynamic tracking and counting of PWD-infected trees based on deep learning have received little attention. Thus, an improved YOLOv5 was proposed in this study, which in synergy with StrongSORT, enables the tracking and counting of PWD-infected trees in a dynamic visual way. For this purpose, a dataset of 6,450 static images (39,809 PWD-infected tree samples) was constructed for model training and validation, and 130 dynamic video segments (approximately 210,000 frames) and 674 static images were used to evaluate the proposed method. To enhance feature extraction efficiency in deep learning networks, the Second-Order Channel Attention (SOCA) mechanism was introduced, and the Simplified Spatial Pyramid Pooling-Fast (SimSPPF) was employed as a replacement for the original SPPF. Additionally, for the geometric features of PWD-infected trees, a more scientific Weighted Boxes Fusion (WBF) strategy was utilized during the prediction phase to construct detection boxes, which contributes to better detection of dense targets. Regarding detection, the improved YOLOv5 performs optimally, with [email protected] and F1-Score of 92.4 % and 88.3 %, respectively, an increase of 2.5 % and 1 % compared to the original model. The generalization capability has been evaluated on the test set, all metrics exceeded 90 %. In terms of tracking, the combination of the improved YOLOv5 with StrongSORT yields Identification F1 (IDF1), High-Order Tracking Accuracy (HOTA), Multi-Object Tracking Accuracy (MOTA), and Multi-Object Tracking Precision (MOTP) of 75.4 %, 55.6 %, 63.5 %, and 72.3 % respectively, showcasing increase of 3.5 %, 2.7 %, 6 %, and 0.3 % compared to the original model. Notably, the Mostly Lost (ML) and Identity Switches (IDSW) are reduced by 43 % and 20 % respectively. Concerning counting, the proposed method was evaluated on 130 dynamic video segments, indicating a high correlation with the Ground truth (R2 = 0.965), affirming its effectiveness. In summary, visual tracking and counting of PWD-infected trees in complex forest areas can be enabled by the method proposed, providing a new approach for the intelligent monitoring and management of PWD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lendar完成签到 ,获得积分10
6秒前
jyy完成签到,获得积分10
7秒前
王冠军完成签到,获得积分10
10秒前
科研通AI5应助淡然的蚂蚁采纳,获得10
13秒前
19秒前
桐桐应助cyhcyh采纳,获得10
19秒前
25秒前
leslie完成签到 ,获得积分10
26秒前
29秒前
李李原上草完成签到 ,获得积分10
35秒前
科研通AI5应助科研通管家采纳,获得10
39秒前
斯寜应助科研通管家采纳,获得20
39秒前
隐形曼青应助科研通管家采纳,获得10
40秒前
斯寜应助科研通管家采纳,获得10
40秒前
40秒前
斯寜应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
Xzh发布了新的文献求助10
1分钟前
cyhcyh完成签到,获得积分20
1分钟前
1分钟前
1分钟前
cyhcyh发布了新的文献求助10
1分钟前
研友_VZG7GZ应助cyhcyh采纳,获得10
1分钟前
1分钟前
wdnyrrc发布了新的文献求助10
2分钟前
wesley完成签到 ,获得积分10
2分钟前
你好好好完成签到,获得积分10
2分钟前
2分钟前
杨gj完成签到,获得积分10
2分钟前
杨gj发布了新的文献求助10
2分钟前
JD完成签到 ,获得积分10
2分钟前
科目三应助杨gj采纳,获得10
2分钟前
斯寜应助科研通管家采纳,获得20
2分钟前
HuiHui完成签到,获得积分10
2分钟前
2分钟前
聪慧的娜完成签到 ,获得积分10
2分钟前
高高的坤完成签到 ,获得积分10
2分钟前
2分钟前
nicaicai发布了新的文献求助10
3分钟前
3分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777580
求助须知:如何正确求助?哪些是违规求助? 3322969
关于积分的说明 10212658
捐赠科研通 3038289
什么是DOI,文献DOI怎么找? 1667296
邀请新用户注册赠送积分活动 798086
科研通“疑难数据库(出版商)”最低求助积分说明 758215