电解质
碳酸乙烯酯
材料科学
锂(药物)
电化学
碳酸二甲酯
溶剂
盐(化学)
相间
化学工程
介电谱
碳酸盐
金属
无机化学
电极
化学
有机化学
催化作用
冶金
物理化学
医学
生物
工程类
遗传学
内分泌学
作者
Qi Kang,Yong Li,Zechao Zhuang,Huijun Yang,Liuxuan Luo,Jie Xu,Jian Wang,Qinghua Guan,Han Zhu,Yinze Zuo,Dong Wang,Fei Pei,Lianbo Ma,Jin Zhao,Pengli Li,Ying Lin,Yijie Liu,Kunming Shi,Hongfei Li,Yingke Zhu
标识
DOI:10.1002/adma.202308799
摘要
Abstract The heterogeneity, species diversity, and poor mechanical stability of solid electrolyte interphases (SEIs) in conventional carbonate electrolytes result in the irreversible exhaustion of lithium (Li) and electrolytes during cycling, hindering the practical applications of Li metal batteries (LMBs). Herein, this work proposes a solvent‐phobic dynamic liquid electrolyte interphase (DLEI) on a Li metal (Li–PFbTHF (perfluoro‐butyltetrahydrofuran)) surface that selectively transports salt and induces salt‐derived SEI formation. The solvent‐phobic DLEI with C–F‐rich groups dramatically reduces the side reactions between Li, carbonate solvents, and humid air, forming a LiF/Li 3 PO 4 ‐rich SEI. In situ electrochemical impedance spectroscopy and Ab‐initio molecular dynamics demonstrate that DLEI effectively stabilizes the interface between Li metal and the carbonate electrolyte. Specifically, the LiFePO 4 ||Li–PFbTHF cells deliver 80.4% capacity retention after 1000 cycles at 1.0 C, excellent rate capacity (108.2 mAh g −1 at 5.0 C), and 90.2% capacity retention after 550 cycles at 1.0 C in full‐cells (negative/positive (N/P) ratio of 8) with high LiFePO 4 loadings (15.6 mg cm −2 ) in carbonate electrolyte. In addition, the 0.55 Ah pouch cell of 252.0 Wh kg −1 delivers stable cycling. Hence, this study provides an effective strategy for controlling salt‐derived SEI to improve the cycling performances of carbonate‐based LMBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI