亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An optimized Q-Learning algorithm for mobile robot local path planning

强化学习 运动规划 计算机科学 初始化 增强学习 移动机器人 人工智能 动作选择 路径(计算) 算法 机器人 机器学习 数学优化 数学 感知 神经科学 生物 程序设计语言
作者
Qian Zhou,Lian Yang,Jiayang Wu,Mengyue Zhu,Haiyong Wang,Jinli Cao
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:286: 111400-111400 被引量:48
标识
DOI:10.1016/j.knosys.2024.111400
摘要

The Q-Learning algorithm is a reinforcement learning technique widely used in various fields such as path planning, intelligent transportation, penetration testing, among others. It primarily involves the interaction between an agent and its environment, enabling the agent to learn an optimal strategy that maximizes cumulative rewards. Most non-agent-based path planning algorithms face challenges in exploring completely unknown environments effectively, lacking efficient perception in unfamiliar settings. Additionally, many Q-Learning-based path planning algorithms suffer from slow convergence and susceptibility to getting stuck in local optimal solutions. To address these issues, an optimized version of the Q-Learning algorithm (Optimized Q-Learning, O-QL) is proposed and applied to local path planning of mobile robots. O-QL introduces novel Q-table initialization methods, incorporates a new action-selection policy, and a new reward function, and adapts the Root Mean Square Propagation (RMSprop) method in the learning rate adjustment. This adjustment dynamically tunes the learning rate based on gradient changes to accelerate learning and enhance path planning efficiency. Simulation experiments are carried out in three maze environments with different complexity levels, and the performance of the algorithm in local path planning is evaluated using steps, exploration reward, learning rate change and running time. The experimental results demonstrate that O-QL exhibits improvements across all four metrics compared to existing algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悄悄完成签到,获得积分10
10秒前
10秒前
11秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
柴三岁发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
35秒前
50秒前
1分钟前
Demi_Ming完成签到,获得积分10
1分钟前
1分钟前
seven完成签到,获得积分10
1分钟前
阿克图尔斯·蒙斯克完成签到,获得积分10
1分钟前
2分钟前
Virtual应助科研通管家采纳,获得20
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
4分钟前
小蘑菇应助科研通管家采纳,获得20
4分钟前
共享精神应助科研通管家采纳,获得10
4分钟前
majx发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
科研通AI5应助majx采纳,获得10
4分钟前
沉默寻凝完成签到,获得积分10
4分钟前
keleboys完成签到 ,获得积分10
4分钟前
andrele发布了新的文献求助10
5分钟前
5分钟前
华仔应助heysiri采纳,获得10
5分钟前
5分钟前
彭于晏应助害怕的鞯采纳,获得10
5分钟前
Nancy0818完成签到 ,获得积分10
5分钟前
筱簋发布了新的文献求助10
5分钟前
5分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
変形菌ミクソヴァース 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4249245
求助须知:如何正确求助?哪些是违规求助? 3782431
关于积分的说明 11873590
捐赠科研通 3434728
什么是DOI,文献DOI怎么找? 1884963
邀请新用户注册赠送积分活动 936603
科研通“疑难数据库(出版商)”最低求助积分说明 842545