Development of a liver disease–specific large language model chat interface using retrieval-augmented generation

肝病学 计算机科学 集合(抽象数据类型) 情报检索 医学 内科学 程序设计语言
作者
Jin Ge,Steve Sun,Joseph F. Owens,Victor Galvez,Oksana Gologorskaya,Jennifer C. Lai,Mark J. Pletcher,Ki Lai
出处
期刊:Hepatology [Lippincott Williams & Wilkins]
卷期号:80 (5): 1158-1168 被引量:72
标识
DOI:10.1097/hep.0000000000000834
摘要

Background and Aims: Large language models (LLMs) have significant capabilities in clinical information processing tasks. Commercially available LLMs, however, are not optimized for clinical uses and are prone to generating hallucinatory information. Retrieval-augmented generation (RAG) is an enterprise architecture that allows the embedding of customized data into LLMs. This approach “specializes” the LLMs and is thought to reduce hallucinations. Approach and Results We developed “LiVersa,” a liver disease–specific LLM, by using our institution’s protected health information-complaint text embedding and LLM platform, “Versa.” We conducted RAG on 30 publicly available American Association for the Study of Liver Diseases guidance documents to be incorporated into LiVersa. We evaluated LiVersa’s performance by conducting 2 rounds of testing. First, we compared LiVersa’s outputs versus those of trainees from a previously published knowledge assessment. LiVersa answered all 10 questions correctly. Second, we asked 15 hepatologists to evaluate the outputs of 10 hepatology topic questions generated by LiVersa, OpenAI’s ChatGPT 4, and Meta’s Large Language Model Meta AI 2. LiVersa’s outputs were more accurate but were rated less comprehensive and safe compared to those of ChatGPT 4. Results: We evaluated LiVersa’s performance by conducting 2 rounds of testing. First, we compared LiVersa’s outputs versus those of trainees from a previously published knowledge assessment. LiVersa answered all 10 questions correctly. Second, we asked 15 hepatologists to evaluate the outputs of 10 hepatology topic questions generated by LiVersa, OpenAI’s ChatGPT 4, and Meta’s Large Language Model Meta AI 2. LiVersa’s outputs were more accurate but were rated less comprehensive and safe compared to those of ChatGPT 4. Conclusions: In this demonstration, we built disease-specific and protected health information-compliant LLMs using RAG. While LiVersa demonstrated higher accuracy in answering questions related to hepatology, there were some deficiencies due to limitations set by the number of documents used for RAG. LiVersa will likely require further refinement before potential live deployment. The LiVersa prototype, however, is a proof of concept for utilizing RAG to customize LLMs for clinical use cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不知发布了新的文献求助10
刚刚
1秒前
eco发布了新的文献求助10
3秒前
木又完成签到,获得积分10
3秒前
automan发布了新的文献求助20
7秒前
Ava应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
Ettie完成签到,获得积分10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
Ava应助科研通管家采纳,获得10
11秒前
无极微光应助科研通管家采纳,获得20
11秒前
可爱丸子完成签到,获得积分10
13秒前
15秒前
科研通AI2S应助王jj采纳,获得10
16秒前
王煜完成签到,获得积分20
16秒前
铁甲小杨完成签到,获得积分0
20秒前
22秒前
22秒前
无私秋珊完成签到,获得积分10
23秒前
不安的半梦完成签到,获得积分10
27秒前
王jj发布了新的文献求助10
28秒前
wq完成签到 ,获得积分10
28秒前
bean发布了新的文献求助10
28秒前
于意给于意的求助进行了留言
30秒前
缥缈的初阳完成签到,获得积分10
37秒前
五虎完成签到,获得积分10
38秒前
posh完成签到 ,获得积分10
44秒前
45秒前
梨子完成签到,获得积分20
45秒前
汤成莉完成签到 ,获得积分10
49秒前
科研通AI5应助dingding采纳,获得30
50秒前
sky完成签到 ,获得积分10
51秒前
51秒前
慢慢完成签到,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Beauty and Innovation in La Machine Chinoise: Falla, Debussy, Ravel, Roussel 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Research Handbook on Law and Political Economy Second Edition 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4801958
求助须知:如何正确求助?哪些是违规求助? 4119908
关于积分的说明 12745699
捐赠科研通 3851879
什么是DOI,文献DOI怎么找? 2121579
邀请新用户注册赠送积分活动 1143695
关于科研通互助平台的介绍 1033926