已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

HeTriNet: Heterogeneous Graph Triplet Attention Network for Drug-Target-Disease Interaction

成对比较 计算机科学 图形 机制(生物学) 疾病 相互依存 药品 计算生物学 药物靶点 交互网络 药物发现 异构网络 理论计算机科学 人工智能 生物信息学 生物 医学 药理学 物理 遗传学 无线网络 量子力学 病理 政治学 基因 电信 法学 无线
作者
Farhan Tanvir,Khaled Mohammed Saifuddin,Tanvir Hossain,Arunkumar Bagavathi,Esra Akbaş
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2312.00189
摘要

Modeling the interactions between drugs, targets, and diseases is paramount in drug discovery and has significant implications for precision medicine and personalized treatments. Current approaches frequently consider drug-target or drug-disease interactions individually, ignoring the interdependencies among all three entities. Within human metabolic systems, drugs interact with protein targets in cells, influencing target activities and subsequently impacting biological pathways to promote healthy functions and treat diseases. Moving beyond binary relationships and exploring tighter triple relationships is essential to understanding drugs' mechanism of action (MoAs). Moreover, identifying the heterogeneity of drugs, targets, and diseases, along with their distinct characteristics, is critical to model these complex interactions appropriately. To address these challenges, we effectively model the interconnectedness of all entities in a heterogeneous graph and develop a novel Heterogeneous Graph Triplet Attention Network (\texttt{HeTriNet}). \texttt{HeTriNet} introduces a novel triplet attention mechanism within this heterogeneous graph structure. Beyond pairwise attention as the importance of an entity for the other one, we define triplet attention to model the importance of pairs for entities in the drug-target-disease triplet prediction problem. Experimental results on real-world datasets show that \texttt{HeTriNet} outperforms several baselines, demonstrating its remarkable proficiency in uncovering novel drug-target-disease relationships.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
moiumuio完成签到,获得积分10
2秒前
大气的剑鬼完成签到,获得积分20
3秒前
4秒前
4秒前
婼汐完成签到 ,获得积分10
6秒前
huxiaowen发布了新的文献求助10
7秒前
乐观萝完成签到 ,获得积分10
7秒前
8秒前
路灯下的小伙完成签到,获得积分10
8秒前
害怕的板凳完成签到 ,获得积分10
8秒前
10秒前
10秒前
小饼干发布了新的文献求助10
10秒前
12秒前
YafishYc发布了新的文献求助10
12秒前
13秒前
Lucas应助huxiaowen采纳,获得10
14秒前
16秒前
17秒前
落叶捎来讯息完成签到 ,获得积分10
18秒前
19秒前
田茂青发布了新的文献求助10
19秒前
Flexy发布了新的文献求助10
19秒前
FashionBoy应助jingjingfang采纳,获得10
21秒前
coolkid应助lan采纳,获得10
23秒前
FLY完成签到,获得积分10
23秒前
24秒前
24秒前
蜻蜓1005完成签到 ,获得积分10
27秒前
迷人问兰发布了新的文献求助30
30秒前
小小aa16完成签到,获得积分10
31秒前
皮皮完成签到 ,获得积分10
36秒前
Orange应助大气的剑鬼采纳,获得10
36秒前
日日夜夜吃不停完成签到,获得积分10
37秒前
44秒前
英姑应助wow采纳,获得10
46秒前
Aloha完成签到 ,获得积分10
46秒前
科研通AI2S应助YafishYc采纳,获得10
47秒前
52秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946074
求助须知:如何正确求助?哪些是违规求助? 3490866
关于积分的说明 11058301
捐赠科研通 3221883
什么是DOI,文献DOI怎么找? 1780696
邀请新用户注册赠送积分活动 865760
科研通“疑难数据库(出版商)”最低求助积分说明 800043