Quantitative Assessment via Multi-Domain Fusion of Muscle Synergy Associated With Upper-Limb Motor Function for Stroke Rehabilitation

物理医学与康复 加权 运动学 康复 计算机科学 冲程(发动机) 分类器(UML) 随机森林 人工智能 机器学习 物理疗法 医学 工程类 物理 放射科 机械工程 经典力学
作者
Xiao Li,Hong Zeng,Yongqiang Li,Aiguo Song
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:71 (5): 1430-1441 被引量:2
标识
DOI:10.1109/tbme.2023.3339634
摘要

Quantitative assessment of upper limb motor function aids therapists in providing appropriate rehabilitation strategies, which plays an essential role in post-stroke rehabilitation. Traditional assessments, relying on clinical scales or kinematic metrics, often involve subjective scores or are influenced by compensatory strategies. Recently, the use of muscle synergies, representing simplified neuromuscular control, has emerged as a promising approach for post-stroke assessment. In general, muscle synergies are decomposed into two components: synergy vectors and synergy activation. Synergy vectors represent the relative weighting of each muscle within each synergy, that is muscle coordination; synergy activation represents the recruitment of the muscle synergy over time, that is muscle activation strength. Both components are vital for adequately assessing patients' motor function. Therefore, we integrate the spatial domain and temporal domain features extracted from synergy vectors and synergy activation, constructing a multi-domain assessment system using a Random Forest classifier, which may provide great qualitative classification accuracy. Furthermore, a novel functional score is generated from the probabilities belonging to the pathological group. Finally, A study involving ten healthy subjects and ten post-stroke patients validates the proposed method. The experimental results show that the classification accuracy was enhanced to 98.56% by fusing the characteristics derived from different domains, which was higher than that based on spatial domain (94.90%) and temporal domain (91.08%), respectively. Furthermore, the assessment score generated by multi-domain fusion framework exhibited a significant correlation with the clinical score. These promising results show the potential of applying the proposed method to clinical assessments for post-stroke patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助俊逸如风采纳,获得10
刚刚
刚刚
kiki发布了新的文献求助10
2秒前
赤丶赤发布了新的文献求助10
2秒前
安静的颖发布了新的文献求助10
4秒前
weilong发布了新的文献求助10
6秒前
栗子完成签到 ,获得积分10
6秒前
蜗牛先生应助pp采纳,获得80
6秒前
火之高兴完成签到 ,获得积分10
8秒前
9秒前
Hello应助DrWang采纳,获得10
9秒前
姜姜完成签到,获得积分10
10秒前
10秒前
blance完成签到,获得积分20
11秒前
17835152738完成签到,获得积分10
11秒前
nico完成签到 ,获得积分10
12秒前
尔信完成签到 ,获得积分10
12秒前
安静的颖完成签到,获得积分10
12秒前
缥缈耷发布了新的文献求助10
14秒前
阮绿凝发布了新的文献求助10
14秒前
徐徐完成签到,获得积分10
15秒前
xyz发布了新的文献求助10
16秒前
16秒前
19秒前
19秒前
19秒前
深情安青应助李成昊采纳,获得10
20秒前
22秒前
23秒前
思源应助缥缈耷采纳,获得10
23秒前
yinjing发布了新的文献求助10
23秒前
25秒前
weilong完成签到,获得积分10
25秒前
赘婿应助wmx采纳,获得10
26秒前
CipherSage应助火星上初柳采纳,获得10
26秒前
欢呼的艳完成签到,获得积分10
27秒前
万能图书馆应助高贵熊猫采纳,获得10
27秒前
科研通AI2S应助Ancy采纳,获得10
27秒前
DrWang发布了新的文献求助10
27秒前
阮绿凝发布了新的文献求助10
27秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
求polyinfo中的所有数据,主要要共聚物的,有偿。 1500
Mechanics of Composite Strengthening 1500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水产动物免疫学 500
鱼类基因组学及基因组物种技术 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4176440
求助须知:如何正确求助?哪些是违规求助? 3711698
关于积分的说明 11705252
捐赠科研通 3394595
什么是DOI,文献DOI怎么找? 1862389
邀请新用户注册赠送积分活动 921150
科研通“疑难数据库(出版商)”最低求助积分说明 833034