物联网
计算机科学
质量(理念)
万维网
数据科学
哲学
认识论
作者
Rajapaksha Mudiyanselage Prasad Niroshan Sanjaya Bandara,Amila Jayasinghe,Guenther Retscher
出处
期刊:Sensors
[Multidisciplinary Digital Publishing Institute]
日期:2025-03-19
卷期号:25 (6): 1918-1918
摘要
The increasing demand for clean and reliable water resources, coupled with the growing threat of water pollution, has made real-time water quality (WQ) monitoring and assessment a critical priority in many urban areas. Urban environments encounter substantial challenges in maintaining WQ, driven by factors such as rapid population growth, industrial expansion, and the impacts of climate change. Effective real-time WQ monitoring is essential for safeguarding public health, promoting environmental sustainability, and ensuring adherence to regulatory standards. The rapid advancement of Internet of Things (IoT) sensor technologies and smartphone applications presents an opportunity to develop integrated platforms for real-time WQ assessment. Advances in the IoT provide a transformative solution for WQ monitoring, revolutionizing the way we assess and manage our water resources. Moreover, recent developments in Location-Based Services (LBSs) and Global Navigation Satellite Systems (GNSSs) have significantly enhanced the accessibility and accuracy of location information. With the proliferation of GNSS services, such as GPS, GLONASS, Galileo, and BeiDou, users now have access to a diverse range of location data that are more precise and reliable than ever before. These advancements have made it easier to integrate location information into various applications, from urban planning and disaster management to environmental monitoring and transportation. The availability of multi-GNSS support allows for improved satellite coverage and reduces the potential for signal loss in urban environments or densely built environments. To harness this potential and to enable the seamless integration of the IoT and LBSs for sustainable WQ monitoring, a systematic literature review was conducted to determine past trends and future opportunities. This research aimed to review the limitations of traditional monitoring systems while fostering an understanding of the positioning capabilities of LBSs in environmental monitoring for sustainable urban development. The review highlights both the advancements and challenges in using the IoT and LBSs for real-time WQ monitoring, offering critical insights into the current state of the technology and its potential for future development. There is a pressing need for an integrated, real-time WQ monitoring system that is cost-effective and accessible. Such a system should leverage IoT sensor networks and LBSs to provide continuous monitoring, immediate feedback, and spatially dynamic insights, empowering stakeholders to address WQ issues collaboratively and efficiently.
科研通智能强力驱动
Strongly Powered by AbleSci AI