Non-invasive quantification of pressure drops in stenotic intracranial vessels: using deep learning-enhanced 4D flow MRI to characterize the regional haemodynamics of the pulsing brain

脉动流 颅内压 医学 磁共振成像 经颅多普勒 狭窄 放射科 生物医学工程 冲程(发动机) 内科学 物理 热力学
作者
Ali El Ahmar,Susanne Schnell,Sameer A. Ansari,R Abdalla,Alireza Vali,Maria Aristova,Michael Markl,Patrick Winter,David Marlevi
出处
期刊:Interface Focus [Royal Society]
卷期号:15 (1) 被引量:1
标识
DOI:10.1098/rsfs.2024.0040
摘要

Stenosis of major intracranial arteries is a significant cause of stroke, with assessment of trans-stenotic pressure drops being a key marker of functional stenosis severity. Non-invasive methods for quantifying intracranial pressure changes are hence crucial; however, the narrow and tortuous cerebrovascular network poses challenges to traditional assessment methods such as transcranial Doppler. This study investigates the use of novel deep learning-enhanced super-resolution (SR) four-dimensional (4D) flow magnetic resonance imaging (MRI) in combination with a physics-informed virtual work–energy relative pressure technique to quantify pressure drops across stenotic intracranial arteries. Performance was validated in intracranial-mimicking in vitro experiments using pulsatile flow before being transferred into an in vivo cohort of patients with intracranial atherosclerotic disease. Conversion into sub-millimetre SR imaging significantly improved the accuracy of regional relative pressure estimations in the pulsing brain arteries, mitigating biases observed at >1 mm resolution imaging, and agreeing strongly with reference catheter-based invasive measurements across both moderate and severe stenoses. The in vivo analysis also revealed a significant increase in pressure drops when converting into sub-millimetre SR data, underlining the importance of apparent image resolution in a clinical setting. The results highlight the potential of SR 4D flow MRI for non-invasive quantification of cerebrovascular pressure changes in pulsing intracranial arteries across stenotic vessel segments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
自信的竹员外完成签到,获得积分10
1秒前
3秒前
天才FF发布了新的文献求助10
4秒前
5秒前
诸葛藏藏完成签到,获得积分10
5秒前
did111完成签到,获得积分10
6秒前
孤独的狼完成签到,获得积分10
7秒前
雨中发呆的猫完成签到,获得积分10
7秒前
星辰大海应助谈谈663采纳,获得10
7秒前
miracle完成签到,获得积分10
8秒前
诸葛藏藏发布了新的文献求助10
8秒前
9秒前
10秒前
小十一完成签到 ,获得积分10
10秒前
zhou发布了新的文献求助10
11秒前
科研通AI5应助甜甜的以筠采纳,获得20
11秒前
隐形曼青应助甜甜的以筠采纳,获得10
11秒前
汉堡包应助牙线棒棒哒采纳,获得10
11秒前
冰魂应助甜甜的以筠采纳,获得10
11秒前
科研通AI5应助甜甜的以筠采纳,获得20
11秒前
科研通AI5应助甜甜的以筠采纳,获得30
11秒前
13秒前
科研小趴菜完成签到,获得积分20
13秒前
14秒前
14秒前
薛小烦发布了新的文献求助10
14秒前
菲菲完成签到,获得积分10
15秒前
18秒前
18秒前
zy完成签到,获得积分10
22秒前
远方发布了新的文献求助10
23秒前
23秒前
23秒前
李爱国应助哈哈Ye采纳,获得10
26秒前
哈哈哈哈发布了新的文献求助10
26秒前
天才FF完成签到,获得积分10
28秒前
miracle发布了新的文献求助20
28秒前
王珺完成签到,获得积分10
31秒前
31秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803756
求助须知:如何正确求助?哪些是违规求助? 3348586
关于积分的说明 10339425
捐赠科研通 3064770
什么是DOI,文献DOI怎么找? 1682727
邀请新用户注册赠送积分活动 808390
科研通“疑难数据库(出版商)”最低求助积分说明 764096