General 3D Vision-Language Model with Fast Rendering and Pre-training Vision-Language Alignment

计算机科学 人工智能 计算机视觉 渲染(计算机图形) 机器视觉 自然语言处理
作者
Kangcheng Liu,Yong‐Jin Liu,Bin Chen
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-18
标识
DOI:10.1109/tpami.2025.3566593
摘要

Deep neural network models have achieved remarkable progress in 3D scene understanding while trained in the closed-set setting and with full labels. However, the major bottleneck for the current 3D recognition approach is that these models do not have the capacity to recognize any unseen novel classes beyond the training categories in diverse real-world applications. In the meantime, current state-of-the-art 3D scene understanding approaches primarily require a large number of high-quality labels to train neural networks, which merely perform well in a fully supervised manner. Therefore, we are in urgent need of a framework that can simultaneously be applicable to both 3D point cloud segmentation and detection, particularly in the circumstances where the labels are rather scarce. This work presents a generalized and straightforward framework for dealing with 3D scene understanding when the labeled scenes are quite limited. To extract knowledge for novel categories from the pre-trained vision-language models, we propose a hierarchical feature-aligned pre-training and knowledge distillation strategy to extract and distill meaningful information from large-scale vision-language models, which helps benefit the open-vocabulary scene understanding tasks. To leverage the boundary information, we propose a novel energy-based loss with boundary awareness benefiting from the region-level boundary predictions. To encourage latent instance discrimination and to guarantee efficiency, we propose the unsupervised region-level semantic contrastive learning scheme for point clouds, using confident predictions of the neural network to discriminate the intermediate feature embeddings at multiple stages. In the limited reconstruction case, our proposed approach, termed WS3D++, ranks 1st on the large-scale ScanNet benchmark on both the task of semantic segmentation and instance segmentation. Also, our proposed WS3D++ achieves state-of-the-art data-efficient learning performance on the other large-scale real-scene indoor and outdoor datasets S3DIS and SemanticKITTI. Extensive experiments with both indoor and outdoor scenes demonstrated the effectiveness of our approach in both data-efficient learning and open-world few-shot learning. All codes, models, and data are to made publicly available at: https://github.com/KangchengLiu. The code is at: https://drive.google.com/drive/folders/1M58V-PtR8DBEwD296zJkNg_m2qq-MTAP Code link.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
上官若男应助xingfangshu采纳,获得10
2秒前
2秒前
2秒前
现代含桃完成签到,获得积分10
2秒前
3秒前
深情安青应助无算浮白采纳,获得10
3秒前
4秒前
hhnicai发布了新的文献求助10
4秒前
4秒前
4秒前
勤奋的千山完成签到,获得积分10
5秒前
纯情的沂发布了新的文献求助10
7秒前
快乐蘑菇完成签到,获得积分10
7秒前
wg言发布了新的文献求助10
7秒前
7秒前
浮游应助现代含桃采纳,获得10
7秒前
邺yu完成签到,获得积分10
7秒前
缓慢寒梦发布了新的文献求助10
8秒前
8秒前
aceilnor完成签到,获得积分10
8秒前
Nathan发布了新的文献求助10
8秒前
寒冷半梦完成签到,获得积分10
8秒前
海绵宝宝发布了新的文献求助10
8秒前
11秒前
sansan完成签到 ,获得积分10
11秒前
研友_8RlG1n发布了新的文献求助20
12秒前
orixero应助科研通管家采纳,获得10
12秒前
多情易蓉应助科研通管家采纳,获得30
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
大个应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得10
13秒前
13秒前
情怀应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Benefit of Whole-Pelvis Radiation for Patients With Muscle-Invasive Bladder Cancer: An Inverse Probability Treatment Weighted Analysis 510
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4702872
求助须知:如何正确求助?哪些是违规求助? 4070615
关于积分的说明 12586543
捐赠科研通 3770964
什么是DOI,文献DOI怎么找? 2082701
邀请新用户注册赠送积分活动 1110066
科研通“疑难数据库(出版商)”最低求助积分说明 988073