HTRecNet: a deep learning study for efficient and accurate diagnosis of hepatocellular carcinoma and cholangiocarcinoma

肝细胞癌 医学 肿瘤科 癌症研究 内科学
作者
Jingze Li,Yupeng Niu,Jiang Du,Jiani Wu,Weichen Guo,Yujie Wang,Jian Wang,Jiong Mu
出处
期刊:Frontiers in Cell and Developmental Biology [Frontiers Media]
卷期号:13
标识
DOI:10.3389/fcell.2025.1549811
摘要

Background Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) represent the primary liver cancer types. Traditional diagnostic techniques, reliant on radiologist interpretation, are both time-intensive and often inadequate for detecting the less prevalent CCA. There is an emergent need to explore automated diagnostic methods using deep learning to address these challenges. Methods This study introduces HTRecNet, a novel deep learning framework for enhanced diagnostic precision and efficiency. The model incorporates sophisticated data augmentation strategies to optimize feature extraction, ensuring robust performance even with constrained sample sizes. A comprehensive dataset of 5,432 histopathological images was divided into 5,096 for training and validation, and 336 for external testing. Evaluation was conducted using five-fold cross-validation and external validation, applying metrics such as accuracy, area under the receiver operating characteristic curve (AUC), and Matthews correlation coefficient (MCC) against established clinical benchmarks. Results The training and validation cohorts comprised 1,536 images of normal liver tissue, 3,380 of HCC, and 180 of CCA. HTRecNet showed exceptional efficacy, consistently achieving AUC values over 0.99 across all categories. In external testing, the model reached an accuracy of 0.97 and an MCC of 0.95, affirming its reliability in distinguishing between normal, HCC, and CCA tissues. Conclusion HTRecNet markedly enhances the capability for early and accurate differentiation of HCC and CCA from normal liver tissues. Its high diagnostic accuracy and efficiency position it as an invaluable tool in clinical settings, potentially transforming liver cancer diagnostic protocols. This system offers substantial support for refining diagnostic workflows in healthcare environments focused on liver malignancies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可爱的函函应助麦辣鸡翅采纳,获得10
1秒前
1秒前
Lucas应助小宝爸爸采纳,获得10
1秒前
2秒前
Orange应助坦率的香烟采纳,获得10
2秒前
SCINEXUS发布了新的文献求助10
2秒前
2秒前
xxn发布了新的文献求助10
2秒前
3秒前
4秒前
5秒前
5秒前
5秒前
FashionBoy应助解安珊采纳,获得10
6秒前
刘洋发布了新的文献求助10
6秒前
ferry发布了新的文献求助10
6秒前
不想干活应助贪玩的幻姬采纳,获得20
6秒前
6秒前
今后应助小洲冲冲冲采纳,获得10
7秒前
zho关闭了zho文献求助
7秒前
7秒前
玖生发布了新的文献求助10
7秒前
8秒前
RLyang发布了新的文献求助10
8秒前
Owen应助JiaY采纳,获得10
8秒前
9秒前
9秒前
不二发布了新的文献求助10
10秒前
10秒前
swing发布了新的文献求助10
10秒前
11秒前
xu完成签到 ,获得积分10
11秒前
醒醒发布了新的文献求助10
11秒前
悦耳的颜完成签到,获得积分20
12秒前
12秒前
13秒前
14秒前
麦辣鸡翅发布了新的文献求助10
14秒前
zho发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Cement Chemistry Calcium silicates and anhydrous Portland cement 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4369757
求助须知:如何正确求助?哪些是违规求助? 3867951
关于积分的说明 12059793
捐赠科研通 3510614
什么是DOI,文献DOI怎么找? 1926546
邀请新用户注册赠送积分活动 968488
科研通“疑难数据库(出版商)”最低求助积分说明 867514