HEK-CL: Hierarchical Enhanced Knowledge-Aware Contrastive Learning for Recommendation

HEK 293细胞 计算生物学 计算机科学 化学 生物 生物化学 基因
作者
Meng Yuan,Zhao Zhang,Wei Chen,Chu Zhao,Tong Cai,Fuzhen Zhuang,Rui Liu,Deqing Wang
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
标识
DOI:10.1145/3728463
摘要

Recently, there has been an emergence of self-supervised recommendation methods that integrate knowledge graphs. Upon conducting a comprehensive review of contrastive learning (CL) in recommender systems, we conclude that existing methods solely focus on data view generation (the first phase) while neglecting the equally pivotal data view alignment (the second phase). However, due to the complexity and variability of real-world graph data, regardless of the graph augmentation strategy employed, it may be unrealistic to expect all entities to benefit from contrastive learning. In this paper, we propose a H ierarchical E nhanced K nowledge-Aware C ontrastive L earning (HEK-CL) method for recommendation. Overall, we aim to hierarchically carry out enhancement strategies in both the first and second phases of knowledge-aware contrastive learning: 1) From the perspective of enhancing data view generation, we focus on combining non-Euclidean representation learning with graph denoising modules. Owing to the unified space's ability to learn the ideal curvature from data distributions, the quality of embeddings for graph data has seen enhancements; 2) From the perspective of enhancing data view alignment, we propose a hyperbolic robust contrastive loss, named HRCL. Through rigorous theoretical analysis and experiments, we demonstrate that HRCL provides a more balanced and equitable training process for all entities than InfoNCE. Numerous experiments on the three real-world datasets show that our HEK-CL outperforms state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZT发布了新的文献求助10
2秒前
蘇q发布了新的文献求助10
4秒前
激流勇进wb完成签到 ,获得积分10
4秒前
4秒前
积极的尔白完成签到 ,获得积分10
6秒前
可爱丸子发布了新的文献求助30
6秒前
6秒前
左右完成签到 ,获得积分10
8秒前
嘻嘻嘻完成签到,获得积分10
8秒前
9秒前
李Li完成签到 ,获得积分20
9秒前
mahliya完成签到,获得积分10
10秒前
斯文败类应助海海采纳,获得10
11秒前
11秒前
12秒前
jjc关闭了jjc文献求助
16秒前
16秒前
ZT发布了新的文献求助30
16秒前
快乐发带发布了新的文献求助10
17秒前
shy完成签到,获得积分10
17秒前
17秒前
打打应助动听的元冬采纳,获得10
20秒前
洪星完成签到,获得积分10
20秒前
21秒前
情怀应助科研通管家采纳,获得10
21秒前
21秒前
无花果应助科研通管家采纳,获得10
21秒前
21秒前
Jasper应助科研通管家采纳,获得10
21秒前
今后应助科研通管家采纳,获得10
21秒前
完美世界应助科研通管家采纳,获得10
21秒前
21秒前
CAOHOU应助科研通管家采纳,获得10
21秒前
22秒前
祁依欧欧应助科研通管家采纳,获得10
22秒前
22秒前
muyassar完成签到,获得积分10
22秒前
铁岭砍王完成签到,获得积分10
23秒前
26秒前
26秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963885
求助须知:如何正确求助?哪些是违规求助? 3509763
关于积分的说明 11148800
捐赠科研通 3243585
什么是DOI,文献DOI怎么找? 1792138
邀请新用户注册赠送积分活动 873547
科研通“疑难数据库(出版商)”最低求助积分说明 803808