材料科学
相间
层状结构
金属锂
锂(药物)
电介质
纳米技术
金属
化学工程
电解质
复合材料
电极
光电子学
冶金
化学
物理化学
内分泌学
工程类
生物
医学
遗传学
作者
Ruixin Lv,Chong Luo,Ke Wang,Wangming Tang,Bingran Liu,Yi Liu,Li Yang,Li Li,Feng Wu,Renjie Chen
出处
期刊:ACS Nano
[American Chemical Society]
日期:2025-05-30
卷期号:19 (22): 21007-21019
被引量:4
标识
DOI:10.1021/acsnano.5c04491
摘要
The natural solid electrolyte interphase (SEI) typically consists of complex ingredients and disordered structures, posing significant challenges in achieving rapid Li+ desolvation and uniform Li+ deposition, which leads to uncontrolled electrolyte decomposition and lithium dendrite growth. This study designs a lamellar sieving interphase with enhanced dielectric environments, achieved through confinement-regulated polymer chain conformation, effectively decoupling the Li+ desolvation and deposition processes. The lamellar interphase selectively sieves solvent molecules, promoting Li+ desolvation and enhancing the dissociation of lithium salts. The nanofluidic channel within the confined lamella promotes ion transfer, ensuring uniform ion distribution and improving mechanical stability. Lithium metal anodes with this lamellar interphase exhibit exceptional stability during stripping/plating cycling, maintaining stable performance for over 2000 h at 2 mA cm-2. Furthermore, LiFePO4||Li and NCM811||Li batteries assembled with the lamellar interphase demonstrate a stable reversible capacity and cycling performance. This study presents a lamellar interphase design, offering tunable confinement and regulation mechanisms to decouple the Li+ desolvation and deposition processes with stable cycling performance in lithium metal batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI