CmdVIT: A Voluntary Facial Expression Recognition Model for Complex Mental Disorders

计算机科学 面部表情 面部表情识别 面部识别系统 模式识别(心理学) 人工智能 语音识别 计算机视觉 心理学
作者
Jiayu Ye,Yanhong Yu,Qingxiang Wang,Guolong Liu,Wentao Li,An Zeng,Yiqun Zhang,Yang Liu,Yunshao Zheng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 3013-3024 被引量:2
标识
DOI:10.1109/tip.2025.3567825
摘要

Facial Expression Recognition (FER) is a critical method for evaluating the emotional states of patients with mental disorders, playing a significant role in treatment monitoring. However, due to privacy constraints, facial expression data from patients with mental disorders is severely limited. Additionally, the more complex inter-class and intra-class similarities compared to healthy individuals make accurate recognition of facial expressions challenging. Therefore, we propose a Voluntary Facial Expression Mimicry (VFEM) experiment, which collected facial expression data from schizophrenia, depression, and anxiety. This experiment establishes the first dataset designed for facial expression recognition tasks exclusively composed of patients with mental disorders. Simultaneously, based on VFEM, we propose a Vision Transformer FER model tailored for Complex mental disorder patients (CmdVIT). CmdVIT integrates crucial facial expression features through both explicit and implicit mechanisms, including explicit visual center positional encoding and implicit sparse attention center loss function. These two key components enhance positional information and minimize the facial feature space distance between conventional attention and critical attention, effectively suppressing inter-class and intra-class similarities. In various FER tasks for different mental disorders in VFEM, CmdVIT achieves more competitive performance compared to contemporary benchmark models. Our works are available at https://github.com/yjy-97/CmdVIT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助YANBINGHANG采纳,获得10
2秒前
DT完成签到,获得积分10
2秒前
罗兰小云发布了新的文献求助10
2秒前
3秒前
6秒前
6秒前
Owen应助包容煎饼采纳,获得10
7秒前
9秒前
11111111完成签到,获得积分10
9秒前
聿1988完成签到,获得积分10
9秒前
浮游应助john采纳,获得10
10秒前
小解发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
传奇3应助唐tang采纳,获得10
12秒前
Myl完成签到,获得积分10
12秒前
bling发布了新的文献求助10
13秒前
13秒前
斯文败类应助xxl采纳,获得10
13秒前
地表飞猪应助xiang采纳,获得10
14秒前
杰杰大叔完成签到,获得积分10
14秒前
豆沙包发布了新的文献求助20
15秒前
16秒前
17秒前
orixero应助罗兰小云采纳,获得10
17秒前
天成完成签到 ,获得积分10
18秒前
所所应助欧子采纳,获得10
18秒前
大模型应助努力采纳,获得10
19秒前
20秒前
Xyy应助蜗牛茜茜采纳,获得10
21秒前
22秒前
鸣蜩阿六应助aurora采纳,获得20
22秒前
23秒前
25秒前
26秒前
能干靖儿发布了新的文献求助10
26秒前
26秒前
jiahao完成签到,获得积分10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300240
求助须知:如何正确求助?哪些是违规求助? 4448171
关于积分的说明 13845185
捐赠科研通 4333829
什么是DOI,文献DOI怎么找? 2379156
邀请新用户注册赠送积分活动 1374314
关于科研通互助平台的介绍 1339962