Bone Morphogenetic Proteins might be the most prospective in glioma treatment because of the facts that they can differentiate glioma cells, inhibit tumor growth and manage glioma stem cells. Its clinical application is hindered by several challenges, including limited permeability across the blood-brain barrier, which impedes effective delivery to the central nervous system; high susceptibility to enzymatic degradation, which compromises stability and therapeutic efficacy; and nonselective binding, which reduces specificity and may result in unintended off-target effects. This review systematically covers the advanced BMP delivery systems such as nanoparticles, smart carriers, gene therapy, and exosome-based system. Hydrogels, scaffolds, and microspheres' local delivery methods are also discussed as prospective options. The in vitro studies reveal that BMPs are effective and using in vivo glioma models there is also evidence of the effectiveness of BMPs. In addition, new clinical trials reveal concern with safety, tolerability, and therapeutic effects of BMPs, especially their combination with chemotherapy and immunotherapy. BMP specificity and therapeutic performance are further optimized by Personalized medicine and CRISPR/Cas engineering. However, regulatory barriers and product commercialization are challenging issues. This review highlights the need for novel approaches and advanced technologies to address the challenges associated with BMP delivery, aiming to establish BMP-based therapies as an effective treatment strategy for glioma.