清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Learning in Drug Metabolism Study

药品 药物代谢 机器学习 药物开发 药物发现 人工智能 药理学 计算机科学 计算生物学 生物信息学 生物
作者
Krishnendu Sinha,Jyotirmoy Ghosh,Parames C. Sil
出处
期刊:Current Drug Metabolism [Bentham Science Publishers]
卷期号:23 (13): 1012-1026 被引量:9
标识
DOI:10.2174/1389200224666221227094144
摘要

Abstract: Metabolic reactions in the body transform the administered drug into metabolites. These metabolites exhibit diverse biological activities. Drug metabolism is the major underlying cause of drug overdose-related toxicity, adversative drug effects and the drug’s reduced efficacy. Though metabolic reactions deactivate a drug, drug metabolites are often considered pivotal agents for off-target effects or toxicity. On the other side, in combination drug therapy, one drug may influence another drug’s metabolism and clearance and is thus considered one of the primary causes of drug-drug interactions. Today with the advancement of machine learning, the metabolic fate of a drug candidate can be comprehensively studied throughout the drug development procedure. Naïve Bayes, Logistic Regression, k-Nearest Neighbours, Decision Trees, different Boosting and Ensemble methods, Support Vector Machines and Artificial Neural Network boosted Deep Learning are some machine learning algorithms which are being extensively used in such studies. Such tools are covering several attributes of drug metabolism, with an emphasis on the prediction of drug-drug interactions, drug-target-interactions, clinical drug responses, metabolite predictions, sites of metabolism, etc. These reports are crucial for evaluating metabolic stability and predicting prospective drug-drug interactions, and can help pharmaceutical companies accelerate the drug development process in a less resourcedemanding manner than what in vitro studies offer. It could also help medical practitioners to use combinatorial drug therapy in a more resourceful manner. Also, with the help of the enormous growth of deep learning, traditional fields of computational drug development like molecular interaction fields, molecular docking, quantitative structure-toactivity relationship (QSAR) studies and quantum mechanical simulations are producing results which were unimaginable couple of years back. This review provides a glimpse of a few contextually relevant machine learning algorithms and then focuses on their outcomes in different studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
yangquanquan发布了新的文献求助10
26秒前
蓝色条纹衫完成签到 ,获得积分10
39秒前
HK完成签到 ,获得积分10
45秒前
47秒前
刘天宇完成签到 ,获得积分10
56秒前
科研通AI2S应助yangquanquan采纳,获得10
1分钟前
追寻青柏完成签到,获得积分10
1分钟前
iShine完成签到 ,获得积分10
1分钟前
完美世界应助追寻青柏采纳,获得10
1分钟前
2分钟前
幽默的太阳完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
拉布拉多多不多完成签到,获得积分10
2分钟前
甜甜友容完成签到,获得积分10
2分钟前
Jasper应助科研通管家采纳,获得10
3分钟前
3分钟前
XD824发布了新的文献求助10
3分钟前
陌小石完成签到 ,获得积分10
3分钟前
4分钟前
科研通AI2S应助zm采纳,获得10
4分钟前
XD824发布了新的文献求助80
4分钟前
lily完成签到 ,获得积分10
4分钟前
4分钟前
爱啃大虾发布了新的文献求助30
4分钟前
zm完成签到,获得积分10
4分钟前
科研通AI2S应助爱啃大虾采纳,获得10
4分钟前
甜美冥茗完成签到 ,获得积分10
4分钟前
5分钟前
XD824发布了新的文献求助10
5分钟前
zoey完成签到,获得积分20
5分钟前
zoey发布了新的文献求助10
5分钟前
foyefeng完成签到 ,获得积分10
5分钟前
濮阳灵竹完成签到,获得积分10
5分钟前
深情安青应助李小猫采纳,获得10
6分钟前
6分钟前
李小猫发布了新的文献求助10
6分钟前
小小完成签到 ,获得积分10
6分钟前
稻子完成签到 ,获得积分10
7分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784804
求助须知:如何正确求助?哪些是违规求助? 3330065
关于积分的说明 10244252
捐赠科研通 3045410
什么是DOI,文献DOI怎么找? 1671678
邀请新用户注册赠送积分活动 800597
科研通“疑难数据库(出版商)”最低求助积分说明 759524