Using Artificial Intelligence Approach for Investigating and Predicting Yield Stress of Cemented Paste Backfill

均方误差 Boosting(机器学习) 梯度升压 随机森林 遗传程序设计 机器学习 极限学习机 数学 决定系数 剪应力 统计 人工智能 算法 计算机科学 材料科学 复合材料 人工神经网络
作者
Van Quan Tran
出处
期刊:Sustainability [MDPI AG]
卷期号:15 (4): 2892-2892 被引量:15
标识
DOI:10.3390/su15042892
摘要

The technology known as cemented paste backfill (CPB) has gained considerable popularity worldwide. Yield stress (YS) is a significant factor considered in the assessment of CPB’s flowability or transportability. The minimal shear stress necessary to start the flow is known as Yield stress (YS), and it serves as an excellent measure of the strength of the particle-particle interaction. The traditional evaluation and measurement of YS performed by experimental tests are time-consuming and costly, which induces delays in construction projects. Moreover, the YS of CPB depends on numerous factors such as cement/tailing ratio, solid content and oxide content of tailing. Therefore, in order to simplify YS estimation and evaluation, the Artificial Intelligence (AI) approaches including eight Machine Learning techniques such as the Extreme Gradient Boosting algorithm, Gradient Boosting algorithm, Random Forest algorithm, Decision Trees, K-Nearest Neighbor, Support Vector Machine, Multivariate Adaptive Regression Splines and Gaussian Process are used to build the soft-computing model in predicting the YS of CPB. The performance of these models is evaluated by three metrics coefficient of determination (R2), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The 3 best models were found to predict the Yield Stress of CPB (Gradient Boosting (GB), Extreme Gradient Boosting (XGB) and Random Forest (RF), respectively) with the 3 metrics of the three models, respectively, GB {R2 = 0.9811, RMSE = 0.1327 MPa, MAE = 0.0896 MPa}, XGB {R2 = 0.9034, RMSE = 0.3004 MPa, MAE = 0.1696 MPa} and RF {R2 = 0.8534, RMSE = 0.3700 MPa, MAE = 0.1786 MPa}, for the testing dataset. Based on the best performance model including GB, XG and RF, the other AI techniques such as SHapley Additive exPlanations (SHAP), Permutation Importance, and Individual Conditional Expectation (ICE) are also used for evaluating the factor effect on the YS of CPB. The results of this investigation can help the engineers to accelerate the mixed design of CPB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
三岁半完成签到,获得积分10
5秒前
细腻的深白完成签到,获得积分10
5秒前
5秒前
fhg完成签到 ,获得积分10
5秒前
西米发布了新的文献求助20
7秒前
7秒前
Eternal发布了新的文献求助10
8秒前
大龙哥886应助三岁半采纳,获得10
9秒前
10秒前
11秒前
11秒前
领导范儿应助Eternal采纳,获得10
14秒前
李健应助NEW采纳,获得10
14秒前
15秒前
15秒前
15秒前
Chara_kara完成签到,获得积分10
16秒前
悠悠发布了新的文献求助10
18秒前
ChenYX发布了新的文献求助10
21秒前
英俊的铭应助张宝采纳,获得10
23秒前
24秒前
whisper80完成签到,获得积分10
26秒前
27秒前
28秒前
NEW发布了新的文献求助10
29秒前
30秒前
31秒前
31秒前
Steven发布了新的文献求助10
32秒前
wndswz完成签到,获得积分10
33秒前
杨怡红发布了新的文献求助10
34秒前
007发布了新的文献求助10
36秒前
37秒前
我是老大应助Minicoper采纳,获得10
37秒前
Eternal发布了新的文献求助10
42秒前
42秒前
香蕉觅云应助杨怡红采纳,获得10
44秒前
baner发布了新的文献求助10
47秒前
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557972
求助须知:如何正确求助?哪些是违规求助? 4642937
关于积分的说明 14669867
捐赠科研通 4584431
什么是DOI,文献DOI怎么找? 2514801
邀请新用户注册赠送积分活动 1489002
关于科研通互助平台的介绍 1459619