亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning guided structure function predictions enable in silico nanoparticle screening for polymeric gene delivery

生物信息学 基因传递 纳米颗粒 聚合物 功能(生物学) 材料科学 纳米技术 生物医学工程 基因 遗传增强 生物 复合材料 工程类 生物化学 进化生物学
作者
Dennis Gong,Elana Ben‐Akiva,Arshdeep Singh,Hannah Yamagata,Savannah Est-Witte,Julie K. Shade,Natalia A. Trayanova,Jordan J. Green
出处
期刊:Acta Biomaterialia [Elsevier BV]
卷期号:154: 349-358 被引量:25
标识
DOI:10.1016/j.actbio.2022.09.072
摘要

Developing highly efficient non-viral gene delivery reagents is still difficult for many hard-to-transfect cell types and, to date, has mostly been conducted via brute force screening routines. High throughput in silico methods of evaluating biomaterials can enable accelerated optimization and development of devices or therapeutics by exploring large chemical design spaces quickly and at low cost. This work reports application of state-of-the-art machine learning algorithms to a dataset of synthetic biodegradable polymers, poly(beta-amino ester)s (PBAEs), which have shown exciting promise for therapeutic gene delivery in vitro and in vivo. The data set includes polymer properties as inputs as well as polymeric nanoparticle transfection performance and nanoparticle toxicity in a range of cells as outputs. This data was used to train and evaluate several state-of-the-art machine learning algorithms for their ability to predict transfection and understand structure-function relationships. By developing an encoding scheme for vectorizing the structure of a PBAE polymer in a machine-readable format, we demonstrate that a random forest model can satisfactorily predict DNA transfection in vitro based on the chemical structure of the constituent PBAE polymer in a cell line dependent manner. Based on the model, we synthesized PBAE polymers and used them to form polymeric gene delivery nanoparticles that were predicted in silico to be successful. We validated the computational predictions in two cell lines in vitro, RAW 264.7 macrophages and Hep3B liver cancer cells, and found that the Spearman's R correlation between predicted and experimental transfection was 0.57 and 0.66 respectively. Thus, a computational approach that encoded chemical descriptors of polymers was able to demonstrate that in silico computational screening of polymeric nanomedicine compositions had utility in predicting de novo biological experiments. Developing highly efficient non-viral gene delivery reagents is difficult for many hard-to-transfect cell types and, to date, has mostly been explored via brute force screening routines. High throughput in silico methods of evaluating biomaterials can enable accelerated optimization and development for therapeutic or biomanufacturing purposes by exploring large chemical design spaces quickly and at low cost. This work reports application of state-of-the-art machine learning algorithms to a large compiled PBAE DNA gene delivery nanoparticle dataset across many cell types to develop predictive models for transfection and nanoparticle cytotoxicity. We develop a novel computational pipeline to encode PBAE nanoparticles with chemical descriptors and demonstrate utility in a de novo experimental context.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cakes完成签到 ,获得积分10
2秒前
5秒前
ZgnomeshghT发布了新的文献求助10
18秒前
MchemG完成签到,获得积分0
18秒前
nini发布了新的文献求助10
19秒前
24秒前
没有昵称完成签到 ,获得积分10
30秒前
~静发布了新的文献求助10
30秒前
科研通AI5应助nini采纳,获得10
36秒前
45秒前
45秒前
feiying发布了新的文献求助10
50秒前
feiying完成签到,获得积分10
1分钟前
自信号厂完成签到 ,获得积分10
1分钟前
nini发布了新的文献求助10
1分钟前
科研通AI5应助nini采纳,获得10
1分钟前
激动的似狮完成签到,获得积分10
1分钟前
Milton_z完成签到 ,获得积分10
1分钟前
lisaltp完成签到,获得积分10
2分钟前
2分钟前
lisaltp发布了新的文献求助30
2分钟前
nini发布了新的文献求助10
2分钟前
yema完成签到 ,获得积分10
2分钟前
2分钟前
斯文败类应助nini采纳,获得10
2分钟前
2分钟前
orixero应助众人皆醉我独醒采纳,获得10
3分钟前
所所应助科研通管家采纳,获得10
3分钟前
Rr完成签到,获得积分10
3分钟前
4分钟前
nini发布了新的文献求助10
4分钟前
Owen应助nini采纳,获得10
4分钟前
4分钟前
nini发布了新的文献求助10
4分钟前
3D完成签到,获得积分10
5分钟前
852应助科研通管家采纳,获得10
5分钟前
独特的夜阑完成签到 ,获得积分10
5分钟前
Mipe完成签到,获得积分10
5分钟前
5分钟前
书剑飞侠完成签到 ,获得积分10
5分钟前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830415
求助须知:如何正确求助?哪些是违规求助? 3372812
关于积分的说明 10475376
捐赠科研通 3092588
什么是DOI,文献DOI怎么找? 1702156
邀请新用户注册赠送积分活动 818797
科研通“疑难数据库(出版商)”最低求助积分说明 771093