Improved classification of soil As contamination at continental scale: Resolving class imbalances using machine learning approach

污染 环境科学 土壤污染 比例(比率) 计算机科学 土壤水分 土壤科学 机器学习 地图学 生态学 生物 地理
作者
Tao Hu,Kechao Li,Chundi Ma,Nana Zhou,Qiusong Chen,Chongchong Qi
出处
期刊:Chemosphere [Elsevier BV]
卷期号:363: 142697-142697 被引量:3
标识
DOI:10.1016/j.chemosphere.2024.142697
摘要

The identification of arsenic (As)-contaminated areas is an important prerequisite for soil management and reclamation. Although previous studies have attempted to identify soil As contamination via machine learning (ML) methods combined with soil spectroscopy, they have ignored the rarity of As-contaminated soil samples, leading to an imbalanced learning problem. A novel ML framework was thus designed herein to solve the imbalance issue in identifying soil As contamination from soil visible and near-infrared spectra. Spectral preprocessing, imbalanced dataset resampling, and model comparisons were combined in the ML framework, and the optimal combination was selected based on the recall. In addition, Bayesian optimization was used to tune the model hyperparameters. The optimized model achieved recall, area under the curve, and balanced accuracy values of 0.83, 0.88, and 0.79, respectively, on the testing set. The recall was further improved to 0.87 with the threshold adjustment, indicating the model's excellent performance and generalization capability in classifying As-contaminated soil samples. The optimal model was applied to a global soil spectral dataset to predict areas at a high risk of soil As contamination on a global scale. The ML framework established in this study represents a milestone in the classification of soil As contamination and can serve as a valuable reference for contamination management in soil science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
wy18567337203发布了新的文献求助10
1秒前
2秒前
子车雁开完成签到,获得积分10
2秒前
3秒前
俏皮的安萱完成签到 ,获得积分10
3秒前
Migrol完成签到,获得积分10
4秒前
苏州河发布了新的文献求助10
4秒前
5秒前
li完成签到,获得积分10
5秒前
tyliu发布了新的文献求助10
6秒前
科研小菜鸡完成签到,获得积分10
6秒前
狒狒发布了新的文献求助10
7秒前
7秒前
木仓完成签到,获得积分10
9秒前
後知後孓发布了新的文献求助10
9秒前
10秒前
Leslie完成签到,获得积分10
11秒前
11秒前
乐观蚂蚁完成签到 ,获得积分10
12秒前
候鸟发布了新的文献求助10
12秒前
13秒前
火火发布了新的文献求助20
13秒前
科研通AI5应助hping采纳,获得30
13秒前
英姑应助LXZ采纳,获得10
14秒前
何大青完成签到,获得积分10
14秒前
前度刘郎应助怕黑寻双采纳,获得10
17秒前
www发布了新的文献求助10
17秒前
迟迟发布了新的文献求助10
18秒前
袁大头发布了新的文献求助10
18秒前
科目三应助冰勾板勾采纳,获得10
18秒前
18秒前
nong12123完成签到,获得积分10
18秒前
19秒前
19秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
镓氧锌钇铀应助yanzhonghui采纳,获得10
20秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4232531
求助须知:如何正确求助?哪些是违规求助? 3765779
关于积分的说明 11832445
捐赠科研通 3424505
什么是DOI,文献DOI怎么找? 1879328
邀请新用户注册赠送积分活动 932272
科研通“疑难数据库(出版商)”最低求助积分说明 839489