Targeted metabolomics combined with machine learning to identify and validate new biomarkers for early SLE diagnosis and disease activity

代谢组学 生物标志物 疾病 生物标志物发现 诊断生物标志物 医学 曲线下面积 生物信息学 诊断准确性 生物化学 内科学 生物 蛋白质组学 基因
作者
Jiabin Liang,Zeping Han,Jie Feng,Fangmei Xie,Wenfeng Luo,Hanwei Chen,J. He
出处
期刊:Clinical Immunology [Elsevier BV]
卷期号:264: 110235-110235 被引量:3
标识
DOI:10.1016/j.clim.2024.110235
摘要

The early diagnosis of systemic lupus erythematosus (SLE) and the assessment of disease activity progression remain a great challenge. Targeted metabolomics has great potential to identify new biomarkers of SLE. Serum from 44 healthy participants and 89 SLE patients were analyzed using HM400 high-throughput targeted metabolomics. Machine learning (ML) with seven learning models and trained the model several times iteratively selected the two best prediction model in a competitive way, which were independent validated by enzyme-linked immunosorbent (ELISA) with 90 SLE patients. In this study, 146 differential metabolites, most of them organic acids, amino acids, and bile acids, were detected between patients with initial SLE and healthy participants, and 8 potential biomarkers were found by intersection of ML and statistics (area under the curve [AUC] > 0.95) showing a significant positive correlation with clinical indicators. In addition, we identified and validated 2 potential biomarkers for SLE classification (P < 0.05, AUC > 0.775; N-Methyl-L-glutamic acid, L-2-aminobutyric acid) showing a significant correlation with the SLE Disease Activity Index. These differential metabolites were mainly involved in metabolic pathways, amino acid biosynthesis, 2-oxocarboxylic acid metabolism and other pathways. This study indicated that the tricarboxylic acid cycle might be associated with SLE drug therapy. We identified 8 diagnostic models biomarkers and 2 biomarkers that could be used to identify initial SLE and distinguish different activity degree, which will promote the development of new tools for the diagnosis and evaluation of SLE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊锐完成签到,获得积分0
1秒前
华子的五A替身完成签到,获得积分10
1秒前
1秒前
1秒前
Vincent完成签到,获得积分10
1秒前
同福发布了新的文献求助10
2秒前
Richard完成签到,获得积分10
2秒前
陈丽媛完成签到,获得积分20
2秒前
AINANA发布了新的文献求助10
2秒前
beizi完成签到,获得积分10
2秒前
悦耳芹菜完成签到,获得积分10
3秒前
木木完成签到 ,获得积分10
3秒前
谦让成协完成签到,获得积分10
3秒前
风趣采白发布了新的文献求助10
4秒前
Vincent发布了新的文献求助10
4秒前
阿水应助丶丶采纳,获得10
5秒前
Vandokey发布了新的文献求助10
5秒前
传奇3应助同福采纳,获得10
5秒前
5秒前
略略略应助科研通管家采纳,获得20
6秒前
打打应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
所所应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
7秒前
笑笑丶不爱笑完成签到,获得积分10
7秒前
xiong完成签到,获得积分10
7秒前
朝气完成签到,获得积分10
9秒前
小蘑菇应助风趣采白采纳,获得10
9秒前
Jasper应助飞云采纳,获得10
10秒前
10秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4092744
求助须知:如何正确求助?哪些是违规求助? 3631446
关于积分的说明 11509895
捐赠科研通 3342397
什么是DOI,文献DOI怎么找? 1837108
邀请新用户注册赠送积分活动 904934
科研通“疑难数据库(出版商)”最低求助积分说明 822708