Nomogram for predicting intolerable postoperative early enteral nutrition following definitive surgery for small intestinal fistula: a cohort study

医学 列线图 肠外营养 肠内给药 外科 瘘管 队列 普通外科 内科学
作者
Weiliang Tian,Lei Luo,Xin Xu,Risheng Zhao,Tao Tian,Wuhan Li,Yunzhao Zhao,Zheng Yao
出处
期刊:International Journal of Surgery [Wolters Kluwer]
卷期号:110 (9): 5595-5604 被引量:1
标识
DOI:10.1097/js9.0000000000001655
摘要

Background: This study was designed to develop and validate a nomogram for predicting intolerable early enteral nutrition (EEN) following definitive surgery (DS) for small intestinal fistula. Methods: A total of 377 patients, recruited from January 2016 to September 2023, was randomly allocated into development ( n =251) and validation ( n =126) groups in a 2:1 ratio. Risk factors were identified using the nomogram. Its performance was assessed based on calibration, discrimination, and clinical utility, with validation confirming its effectiveness. Results: Of the 377 patients, 87 (23.1%) were intolerant to EEN, including 59 (23.1%) in the development cohort and 28 (22.1%) in the validation cohort ( P =0.84). Four factors were identified as predictive of intolerable EEN: severe abdominal adhesion, deciliter of blood loss during DS, human serum albumin (Alb) input >40 g during and within 48 h post-DS, and the visceral fat area (VFA)/total abdominal muscle area index (TAMAI) ratio. The model demonstrated excellent discrimination, with a C-index of 0.79 (95% CI: 0.74–0.87, including internal validation) and robust calibration. In the validation cohort, the nomogram showed strong discrimination (C-index=0.77; 95% CI: 0.64–0.87) and solid calibration. Decision curve analysis affirmed the nomogram’s clinical utility. Conclusion: This research introduces a nomogram that enables the individualized prediction of intolerable EEN following DS for small intestinal fistula, demonstrating a possible clinical utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ding应助沉静缘分采纳,获得10
1秒前
1秒前
Lan完成签到 ,获得积分10
1秒前
曾经的丹彤完成签到,获得积分10
1秒前
Green完成签到,获得积分10
1秒前
科研通AI5应助符寄柔采纳,获得10
1秒前
2秒前
Ankher发布了新的文献求助200
2秒前
ECUST发布了新的文献求助10
2秒前
dangziutiu完成签到 ,获得积分10
2秒前
动力小滋完成签到,获得积分10
2秒前
yumemakase完成签到,获得积分10
2秒前
2秒前
妮妮完成签到,获得积分10
3秒前
hea完成签到,获得积分10
3秒前
Hannahcx发布了新的文献求助10
4秒前
4秒前
糊涂的元珊完成签到 ,获得积分10
4秒前
sunshine完成签到,获得积分10
4秒前
齐齐发布了新的文献求助10
4秒前
zcg完成签到,获得积分10
4秒前
激动的谷秋完成签到,获得积分10
5秒前
懵懂的南风完成签到,获得积分10
5秒前
5秒前
飞快的孱完成签到,获得积分10
6秒前
muyige完成签到,获得积分10
6秒前
飘零的歌手完成签到,获得积分10
6秒前
6260完成签到,获得积分10
6秒前
科研通AI5应助木木采纳,获得10
7秒前
安详的语蕊完成签到,获得积分10
7秒前
小肆发布了新的文献求助10
7秒前
NexusExplorer应助1111111111111采纳,获得10
7秒前
8秒前
三石盟约完成签到,获得积分10
9秒前
eyyjxl发布了新的文献求助10
9秒前
嘎嘎板正完成签到,获得积分10
9秒前
CXH完成签到,获得积分10
10秒前
符寄柔完成签到,获得积分20
10秒前
振江完成签到,获得积分10
10秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830708
求助须知:如何正确求助?哪些是违规求助? 3373047
关于积分的说明 10477167
捐赠科研通 3093166
什么是DOI,文献DOI怎么找? 1702362
邀请新用户注册赠送积分活动 818956
科研通“疑难数据库(出版商)”最低求助积分说明 771173