A Vision for the Future of Materials Innovation and How to Fast-Track It with Services

元数据 工作流程 计算机科学 软件 数据科学 可信赖性 科学仪器 人工智能 数据库 万维网 计算机安全 量子力学 物理 程序设计语言
作者
Lorenz J. Falling
出处
期刊:ACS Physical Chemistry Au [American Chemical Society]
卷期号:4 (5): 420-429 被引量:1
标识
DOI:10.1021/acsphyschemau.4c00009
摘要

Today, we witness how our scientific ecosystem tries to accommodate a new form of intelligence, artificial intelligence (AI). To make the most of AI in materials science, we need to make the data from computational and laboratory experiments machine-readable, but while that works well for computational experiments, integrating laboratory hardware into a digital workflow seems to be a formidable barrier toward that goal. This paper explores measurement services as a way to lower this barrier. I envision the Entity for Multivariate Material Analysis (EMMA), a centralized service that offers measurement bundles tailored for common research needs. EMMA's true strength, however, lies in its software ecosystem to treat, simulate, and store the measured data. Its close integration of measurements and their simulation not only produces metadata-rich experimental data but also provides a self-consistent framework that links the sample with a snapshot of its digital twin. If EMMA was to materialize, its database of experimental data connected to digital twins could serve as the fuel for physics-informed machine learning and a trustworthy horizon of expectations for material properties. This drives material innovation since knowing the statistics helps find the exceptional. This is the EMMA approach: fast-tracking material innovation by integrated measurement and software services.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寻道图强应助刻苦的小土豆采纳,获得100
刚刚
兰高锋发布了新的文献求助30
1秒前
打打应助Jiang采纳,获得10
3秒前
4秒前
刘言发布了新的文献求助20
5秒前
李文浩发布了新的文献求助10
5秒前
完美世界应助李123采纳,获得10
6秒前
7秒前
Hello应助CHANGJIAGAO采纳,获得10
7秒前
8秒前
9秒前
小二郎应助ProfYang采纳,获得10
9秒前
9秒前
时迁关注了科研通微信公众号
10秒前
10秒前
田様应助李文浩采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
万信心发布了新的文献求助10
13秒前
深情安青应助NIUB采纳,获得10
14秒前
14秒前
15秒前
紫瑕完成签到,获得积分10
15秒前
桐桐应助干净冰露采纳,获得10
16秒前
棠梨子完成签到,获得积分10
16秒前
伞镜完成签到 ,获得积分10
16秒前
陵墨影发布了新的文献求助10
16秒前
17秒前
zyc发布了新的文献求助10
17秒前
清风发布了新的文献求助10
18秒前
18秒前
搜集达人应助Re采纳,获得10
18秒前
SciGPT应助傻傻的哈密瓜采纳,获得10
19秒前
刘言发布了新的文献求助10
20秒前
20秒前
无极微光应助奋斗的珍采纳,获得20
20秒前
萝卜干完成签到,获得积分10
21秒前
22秒前
22秒前
22秒前
CodeCraft应助大黑采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533364
求助须知:如何正确求助?哪些是违规求助? 4621655
关于积分的说明 14579741
捐赠科研通 4561776
什么是DOI,文献DOI怎么找? 2499572
邀请新用户注册赠送积分活动 1479321
关于科研通互助平台的介绍 1450522