Hybrid non-animal modeling: A mechanistic approach to predict chemical hepatotoxicity

计算机科学 生化工程 化学 工程类
作者
Elena Chung,Xia Wen,Xuelian Jia,Heather L. Ciallella,Lauren M. Aleksunes,Hao Zhu
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:471: 134297-134297 被引量:4
标识
DOI:10.1016/j.jhazmat.2024.134297
摘要

Developing mechanistic non-animal testing methods based on the adverse outcome pathway (AOP) framework must incorporate molecular and cellular key events associated with target toxicity. Using data from an in vitro assay and chemical structures, we aimed to create a hybrid model to predict hepatotoxicants. We first curated a reference dataset of 869 compounds for hepatotoxicity modeling. Then, we profiled them against PubChem for existing in vitro toxicity data. Of the 2560 resulting assays, we selected the mitochondrial membrane potential (MMP) assay, a high-throughput screening (HTS) tool that can test chemical disruptors for mitochondrial function. Machine learning was applied to develop quantitative structure-activity relationship (QSAR) models with 2536 compounds tested in the MMP assay for screening new compounds. The MMP assay results, including QSAR model outputs, yielded hepatotoxicity predictions for reference set compounds with a Correct Classification Ratio (CCR) of 0.59. The predictivity improved by including 37 structural alerts (CCR = 0.8). We validated our model by testing 37 reference set compounds in human HepG2 hepatoma cells, and reliably predicting them for hepatotoxicity (CCR = 0.79). This study introduces a novel AOP modeling strategy that combines public HTS data, computational modeling, and experimental testing to predict chemical hepatotoxicity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色黑米发布了新的文献求助10
刚刚
猪猪hero应助科研通管家采纳,获得10
1秒前
1秒前
彭于彦祖应助科研通管家采纳,获得20
1秒前
大个应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
雨夜星空应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
aprilvanilla应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
2秒前
雨夜星空应助科研通管家采纳,获得10
2秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
3秒前
大模型应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
今夕何夕发布了新的文献求助10
4秒前
苏雨康发布了新的文献求助10
6秒前
9秒前
彭于晏应助程昕采纳,获得10
10秒前
12秒前
Wei发布了新的文献求助10
14秒前
zlimu完成签到,获得积分10
15秒前
动听半雪发布了新的文献求助10
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776768
求助须知:如何正确求助?哪些是违规求助? 3322170
关于积分的说明 10209141
捐赠科研通 3037424
什么是DOI,文献DOI怎么找? 1666679
邀请新用户注册赠送积分活动 797625
科研通“疑难数据库(出版商)”最低求助积分说明 757944