Transportation infrastructure upgrading and green development efficiency: Empirical analysis with double machine learning method

多重共线性 可持续发展 实证研究 环境经济学 中国 交通基础设施 可持续运输 运输工程 绿色增长 业务 计算机科学 持续性 经济 工程类 回归分析 生态学 生物 哲学 认识论 机器学习 政治学 法学
作者
Shuai Ling,Shurui Jin,Haijie Wang,Zhenhua Zhang,Yanchao Feng
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:358: 120922-120922 被引量:39
标识
DOI:10.1016/j.jenvman.2024.120922
摘要

In order to deal with the environmental problems such as pollution emissions and climate change, sustainable development in the field of transportation has gradually become a hot topic to all sectors of society. In addition, promoting the green and low-carbon transformation of China's transportation is also an important issue in the new era. Thus, it is particularly important to correctly identify the green effect of high-speed rail. However, the traditional causal reasoning model faces several challenges such as 'dimensional curse' and multicollinearity. Based on the panel data of 283 prefecture-level cities in China from 2003 to 2019, this study uses the double machine learning model to explore the impact of transportation infrastructure upgrading on the efficiency of urban green development in China. The research shows that the upgrading of transportation infrastructure can effectively improve the efficiency of urban green development by 4%. Service industry agglomeration and green innovation are verified as two mediating channels. Moreover, the synthetic difference in difference model is employed to evaluate the regional impact of high-speed rail, and finds that the regional impact of transportation policies often exceeds the impact of individual cities. We further apply the conclusions of this paper to the research at the micro enterprise level. Goodman-Bacon decomposition and a variety of robustness tests confirm the validity of our conclusions. The study's comprehensive empirical analysis not only validates the positive effects of transportation upgrades on green development, but also offers novel insights into the underlying mechanisms and policy implications of transportation upgrading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大秦发布了新的文献求助10
2秒前
LL发布了新的文献求助10
3秒前
5秒前
fafafa完成签到,获得积分10
5秒前
ximixigua完成签到,获得积分10
6秒前
fls221完成签到,获得积分10
6秒前
何小明完成签到,获得积分10
6秒前
刘欢发布了新的文献求助10
7秒前
7秒前
科研通AI2S应助hml123采纳,获得10
8秒前
脆啵啵马克宝完成签到,获得积分10
8秒前
kingwill应助aaaabc采纳,获得20
9秒前
9秒前
李蕤蕤完成签到,获得积分10
10秒前
南风发布了新的文献求助10
10秒前
张流筝完成签到 ,获得积分10
10秒前
大个应助ximixigua采纳,获得10
11秒前
11发布了新的文献求助10
11秒前
大模型应助青年晚报采纳,获得10
13秒前
14秒前
14秒前
14秒前
14秒前
15秒前
16秒前
17秒前
何小明发布了新的文献求助10
18秒前
林夕发布了新的文献求助10
19秒前
19秒前
11完成签到,获得积分20
19秒前
Ruiruirui发布了新的文献求助10
20秒前
Yiran完成签到 ,获得积分10
20秒前
20秒前
hahaer发布了新的文献求助10
21秒前
22秒前
李健的小迷弟应助melisa采纳,获得10
23秒前
淡定的黑米完成签到,获得积分10
24秒前
打打应助科研通管家采纳,获得10
24秒前
我是老大应助科研通管家采纳,获得10
24秒前
桐桐应助科研通管家采纳,获得10
24秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Mortality and adverse events of special interest with intravenous belimumab for adults with active, autoantibody-positive systemic lupus erythematosus (BASE): a multicentre, double-blind, randomised, placebo-controlled, phase 4 trial 390
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838478
求助须知:如何正确求助?哪些是违规求助? 3380795
关于积分的说明 10515867
捐赠科研通 3100415
什么是DOI,文献DOI怎么找? 1707474
邀请新用户注册赠送积分活动 821757
科研通“疑难数据库(出版商)”最低求助积分说明 772935