Transportation infrastructure upgrading and green development efficiency: Empirical analysis with double machine learning method

多重共线性 可持续发展 实证研究 环境经济学 中国 交通基础设施 可持续运输 运输工程 绿色增长 业务 计算机科学 持续性 经济 工程类 回归分析 生态学 生物 哲学 认识论 机器学习 政治学 法学
作者
Shuai Ling,Shurui Jin,Haijie Wang,Zhenhua Zhang,Yanchao Feng
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:358: 120922-120922 被引量:61
标识
DOI:10.1016/j.jenvman.2024.120922
摘要

In order to deal with the environmental problems such as pollution emissions and climate change, sustainable development in the field of transportation has gradually become a hot topic to all sectors of society. In addition, promoting the green and low-carbon transformation of China's transportation is also an important issue in the new era. Thus, it is particularly important to correctly identify the green effect of high-speed rail. However, the traditional causal reasoning model faces several challenges such as 'dimensional curse' and multicollinearity. Based on the panel data of 283 prefecture-level cities in China from 2003 to 2019, this study uses the double machine learning model to explore the impact of transportation infrastructure upgrading on the efficiency of urban green development in China. The research shows that the upgrading of transportation infrastructure can effectively improve the efficiency of urban green development by 4%. Service industry agglomeration and green innovation are verified as two mediating channels. Moreover, the synthetic difference in difference model is employed to evaluate the regional impact of high-speed rail, and finds that the regional impact of transportation policies often exceeds the impact of individual cities. We further apply the conclusions of this paper to the research at the micro enterprise level. Goodman-Bacon decomposition and a variety of robustness tests confirm the validity of our conclusions. The study's comprehensive empirical analysis not only validates the positive effects of transportation upgrades on green development, but also offers novel insights into the underlying mechanisms and policy implications of transportation upgrading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助潇洒的小海豚采纳,获得10
3秒前
ll发布了新的文献求助10
3秒前
SciGPT应助谦让秋凌采纳,获得10
4秒前
拼搏的奄发布了新的文献求助10
4秒前
4秒前
0h完成签到,获得积分10
5秒前
xunl发布了新的文献求助10
5秒前
5秒前
6秒前
swsx1317完成签到,获得积分10
6秒前
两颗星完成签到,获得积分10
7秒前
yusunya完成签到,获得积分10
7秒前
hometown发布了新的文献求助10
7秒前
lili15682218892完成签到,获得积分10
9秒前
开霁发布了新的文献求助10
10秒前
凶狠的谷蓝完成签到,获得积分10
11秒前
立夏完成签到,获得积分10
11秒前
13秒前
djf103完成签到 ,获得积分10
14秒前
拼搏的奄完成签到,获得积分10
14秒前
cherlie应助ll采纳,获得10
14秒前
wry完成签到,获得积分10
15秒前
香蕉觅云应助如意冥茗采纳,获得10
17秒前
丘比特应助开霁采纳,获得10
17秒前
arsenal完成签到 ,获得积分10
18秒前
hometown完成签到,获得积分10
19秒前
swsx1317发布了新的文献求助10
20秒前
22秒前
24秒前
jingjingyang发布了新的文献求助10
24秒前
25秒前
留胡子的霖完成签到,获得积分10
25秒前
27秒前
晨晨完成签到,获得积分10
28秒前
29秒前
Wzh发布了新的文献求助10
29秒前
29秒前
时梦冉发布了新的文献求助10
31秒前
炙热初晴完成签到,获得积分10
32秒前
xunl完成签到,获得积分10
33秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 460
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4059553
求助须知:如何正确求助?哪些是违规求助? 3597855
关于积分的说明 11429114
捐赠科研通 3322698
什么是DOI,文献DOI怎么找? 1826876
邀请新用户注册赠送积分活动 897519
科研通“疑难数据库(出版商)”最低求助积分说明 818513