WPS:A whole phenology-based spectral feature selection method for mapping winter crop from time-series images

物候学 系列(地层学) 选择(遗传算法) 特征选择 特征(语言学) 遥感 作物 模式识别(心理学) 地图学 计算机科学 地理 人工智能 林业 农学 生物 哲学 语言学 古生物学
作者
Man Liu,Wei He,Hongyan Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:210: 141-159 被引量:12
标识
DOI:10.1016/j.isprsjprs.2024.03.005
摘要

Accurately obtaining the spatial distribution and planting patterns of crops is very important for agricultural planning and food security. At present, time-series images have been proved to be an effective tool to characterize crop seasonal growth patterns, and identifying crop information by measuring the time-series similarity between unknown classes and known crop phenology curves is also considered to be a useful way. However, the existing methods of selecting feature ignore the connection between each phenological stage of crops and the unique growth rules of the whole phenology, which makes it difficult to select time-series spectral features that are potentially important for crop mapping. In order to make up for this problem, a Whole Phenology-based Spectral Feature Selection (WPS) method was proposed. The aim was to select the time-series feature sets with great differences among winter crops from a large number of spectral features, so as to improve the mapping accuracy of winter rapeseed and winter wheat. Firstly, spectral separability between all classes is calculated. Secondly, the key phenological periods of winter crops were selected according to the importance of temporal features, and the spectral feature sets with high separability were selected according to the key phenological periods. Finally, a Time-weighted Dynamic Time Warping (TWDTW) algorithm was used to generate the winter rapeseed and winter wheat maps of two cities in the middle and lower reaches of the Yangtze River. The mapping accuracy of the two crops is more than 92%, which matches the crop planting area well. The research shows that combining the WPS method with the TWDTW mapping method has great potential to accurately map crop types based on satellite time-series images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
火星上的手链完成签到,获得积分10
1秒前
猪猪侠发布了新的文献求助10
1秒前
趁微风不躁完成签到,获得积分10
2秒前
酬勤完成签到,获得积分10
2秒前
3秒前
科研通AI5应助森森森采纳,获得10
3秒前
4秒前
打打应助SHUANGW采纳,获得30
5秒前
5秒前
手术完成签到,获得积分10
6秒前
sweet完成签到,获得积分10
7秒前
7秒前
8秒前
shasha发布了新的文献求助10
8秒前
手术发布了新的文献求助10
8秒前
8秒前
酷波er应助xx采纳,获得10
8秒前
O基米德完成签到 ,获得积分10
9秒前
浮游应助小落看不完采纳,获得10
10秒前
11秒前
量子星尘发布了新的文献求助50
11秒前
11秒前
12秒前
Derek完成签到,获得积分10
12秒前
11关闭了11文献求助
13秒前
wu发布了新的文献求助10
13秒前
adrift发布了新的文献求助10
13秒前
jertias完成签到,获得积分10
14秒前
科目三应助杨立胜采纳,获得10
15秒前
16秒前
幸福的芸发布了新的文献求助10
17秒前
18秒前
华仔应助sochiyuen采纳,获得10
19秒前
陈美宏发布了新的文献求助10
21秒前
高贵洋葱发布了新的文献求助10
22秒前
lzx完成签到,获得积分10
22秒前
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4886516
求助须知:如何正确求助?哪些是违规求助? 4171415
关于积分的说明 12945206
捐赠科研通 3932024
什么是DOI,文献DOI怎么找? 2157377
邀请新用户注册赠送积分活动 1175763
关于科研通互助平台的介绍 1080355