亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning predictive models and risk factors for lymph node metastasis in non-small cell lung cancer

医学 逻辑回归 列线图 接收机工作特性 肺癌 内科学 肿瘤科 多元统计 T级 阶段(地层学) 子群分析 多元分析 Lasso(编程语言) 机器学习 癌症 荟萃分析 计算机科学 古生物学 万维网 生物
作者
Bo Wu,Yihui Zhu,Zhuozheng Hu,Jiajun Wu,Weijun Zhou,Mao-Yan Si,Xiying Cao,Zhicheng Wu,Wenxiong Zhang
出处
期刊:BMC Pulmonary Medicine [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12890-024-03345-7
摘要

Abstract Background The prognosis of non-small cell lung cancer (NSCLC) is substantially affected by lymph node metastasis (LNM), but there are no noninvasive, inexpensive methods of relatively high accuracy available to predict LNM in NSCLC patients. Methods Clinical data on NSCLC patients were obtained from the Surveillance, Epidemiology, and End Results (SEER) database. Risk factors for LNM were recognized LASSO and multivariate logistic regression. Six predictive models were constructed with machine learning based on risk factors. The area under the receiver operating characteristic curve (AUC) was used to assess the performance of the model. Subgroup analysis with different T-stages was performed on an optimal model. A webpage LNM risk calculator for optimal model was built using the Shinyapps.io platform. Results We enrolled 64,012 NSCLC patients, of whom 26,611 (41.57%) had LNM. Using multivariate logistic regression, we finally identified 10 independent risk factors for LNM: age, sex, race, histology, primary site, grade, T stage, M stage, tumor size, and bone metastases. GLM is the optimal model among all six machine learning models in both the training and validation cohorts. Subgroup analyses revealed that GLM has good predictability for populations with different T staging. A webpage LNM risk calculator based on GLM was posted on the shinyapps.io platform ( https://wubopredict.shinyapps.io/dynnomapp/ ). Conclusion The predictive model based on GLM can be used to precisely predict the probability of LNM in NSCLC patients, which was proven effective in all subgroup analyses according to T staging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Bin_Liu采纳,获得10
8秒前
小小怪完成签到 ,获得积分10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
ceicic发布了新的文献求助10
16秒前
核桃发布了新的文献求助10
24秒前
心灵美半邪完成签到,获得积分10
32秒前
monster0101完成签到 ,获得积分10
32秒前
迷你的靖雁完成签到,获得积分10
35秒前
38秒前
45秒前
核桃完成签到,获得积分10
46秒前
平淡的烧鹅完成签到,获得积分10
51秒前
51秒前
清禾kat完成签到,获得积分10
1分钟前
stone关注了科研通微信公众号
1分钟前
小花小宝和阿飞完成签到 ,获得积分10
1分钟前
万能图书馆应助andrele采纳,获得10
1分钟前
1分钟前
星河完成签到,获得积分10
1分钟前
啾栖发布了新的文献求助10
1分钟前
1分钟前
Renhong发布了新的文献求助10
1分钟前
CipherSage应助Jian采纳,获得10
1分钟前
Renhong完成签到,获得积分10
1分钟前
1分钟前
顺利山柏完成签到 ,获得积分10
1分钟前
超帅从彤完成签到 ,获得积分10
1分钟前
Atropine发布了新的文献求助10
1分钟前
1分钟前
清心淡如水完成签到,获得积分10
1分钟前
机灵哈密瓜完成签到,获得积分10
1分钟前
menghuigucha完成签到,获得积分10
1分钟前
1分钟前
香菇煲汤完成签到,获得积分10
1分钟前
WHY完成签到 ,获得积分10
1分钟前
花花521完成签到,获得积分10
1分钟前
香菇煲汤发布了新的文献求助60
1分钟前
tanhaowen发布了新的文献求助10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792399
求助须知:如何正确求助?哪些是违规求助? 3336687
关于积分的说明 10281839
捐赠科研通 3053411
什么是DOI,文献DOI怎么找? 1675608
邀请新用户注册赠送积分活动 803571
科研通“疑难数据库(出版商)”最低求助积分说明 761457