亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing Underwater Images through Multi-Frequency Detail Optimization and Adaptive Color Correction

水下 计算机科学 计算机视觉 人工智能 遥感 环境科学 地质学 海洋学
作者
Xiujing Gao,Junjie Jin,Fanchao Lin,Hongwu Huang,Jiawei Yang,Yongfeng Xie,Biwen Zhang
出处
期刊:Journal of Marine Science and Engineering [Multidisciplinary Digital Publishing Institute]
卷期号:12 (10): 1790-1790
标识
DOI:10.3390/jmse12101790
摘要

This paper presents a novel underwater image enhancement method addressing the challenges of low contrast, color distortion, and detail loss prevalent in underwater photography. Unlike existing methods that may introduce color bias or blur during enhancement, our approach leverages a two-pronged strategy. First, an Efficient Fusion Edge Detection (EFED) module preserves crucial edge information, ensuring detail clarity even in challenging turbidity and illumination conditions. Second, a Multi-scale Color Parallel Frequency-division Attention (MCPFA) module integrates multi-color space data with edge information. This module dynamically weights features based on their frequency domain positions, prioritizing high-frequency details and areas affected by light attenuation. Our method further incorporates a dual multi-color space structural loss function, optimizing the performance of the network across RGB, Lab, and HSV color spaces. This approach enhances structural alignment and minimizes color distortion, edge artifacts, and detail loss often observed in existing techniques. Comprehensive quantitative and qualitative evaluations using both full-reference and no-reference image quality metrics demonstrate that our proposed method effectively suppresses scattering noise, corrects color deviations, and significantly enhances image details. In terms of objective evaluation metrics, our method achieves the best performance in the test dataset of EUVP with a PSNR of 23.45, SSIM of 0.821, and UIQM of 3.211, indicating that it outperforms state-of-the-art methods in improving image quality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xcltzh1296完成签到,获得积分10
刚刚
Leon应助xu采纳,获得20
3秒前
大个应助烟消云散采纳,获得10
36秒前
webmaster完成签到,获得积分10
40秒前
44秒前
MR VET发布了新的文献求助10
50秒前
MR VET完成签到,获得积分20
59秒前
1分钟前
damturexu发布了新的文献求助10
1分钟前
香蕉觅云应助高高元柏采纳,获得10
1分钟前
damturexu完成签到,获得积分10
1分钟前
1分钟前
烟消云散发布了新的文献求助10
1分钟前
NexusExplorer应助烟消云散采纳,获得10
1分钟前
在路上完成签到 ,获得积分0
2分钟前
2分钟前
andrele发布了新的文献求助10
2分钟前
3分钟前
烟消云散发布了新的文献求助10
3分钟前
烟消云散完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
在水一方应助科研通管家采纳,获得10
4分钟前
4分钟前
5分钟前
无花果应助科研通管家采纳,获得10
6分钟前
所所应助James采纳,获得10
6分钟前
Blessing发布了新的文献求助20
6分钟前
Blessing完成签到,获得积分10
6分钟前
称心如意完成签到 ,获得积分10
7分钟前
年轻千愁完成签到 ,获得积分10
8分钟前
TEY完成签到 ,获得积分10
8分钟前
所所应助schnappi采纳,获得10
8分钟前
8分钟前
schnappi完成签到,获得积分20
8分钟前
schnappi发布了新的文献求助10
8分钟前
xingsixs完成签到 ,获得积分10
8分钟前
9分钟前
James发布了新的文献求助10
9分钟前
James完成签到,获得积分10
9分钟前
传奇3应助wise111采纳,获得10
10分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792512
求助须知:如何正确求助?哪些是违规求助? 3336729
关于积分的说明 10281990
捐赠科研通 3053516
什么是DOI,文献DOI怎么找? 1675649
邀请新用户注册赠送积分活动 803609
科研通“疑难数据库(出版商)”最低求助积分说明 761468