iACP-DFSRA: identification of anticancer peptides based on a dual-channel fusion strategy of ResCNN and Attention

对偶(语法数字) 鉴定(生物学) 计算生物学 化学 计算机科学 组合化学 生物 哲学 植物 语言学
作者
Xin Wang,Zimeng Zhang,Chang Liu
出处
期刊:Journal of Molecular Biology [Elsevier BV]
卷期号:: 168810-168810 被引量:2
标识
DOI:10.1016/j.jmb.2024.168810
摘要

Anticancer peptides (ACPs) have been widely applied in the treatment of cancer owing to good safety, rational side effects, and high selectivity. However, the number of ACPs that have been experimentally validated is limited as identification of ACPs is extremely expensive. Hence, accurate and cost-effective identification methods for ACPs are urgently needed. In this work, we proposed a deep learning-based model, named iACP-DFSRA, for ACPs identification. Specifically, we adopted two kinds of sequence embedding technologies, ProtBert_BFD pre-training language model and handcrafted features to encode protein sequences. Then, the LightGBM was used for feature selection, and the selected features were input into ResCNN and Attention mechanism, respectively, to extract local and global features. Finally, the concatenate features were deeply fused by using the Attention mechanism to allow key features to be paid more attention to by the model and make predictions by fully connected layer. The results of 10-fold cross-validation demonstrated that the iACP-DFSRA model delivered improved results in most metrics with Sp of 94.15%, Sn of 95.32%, Acc of 94.74% and MCC of 89.48% compared to the latest AACFlow model. Indeed, the iACP-DFSRA model is the only model with Acc > 90% and MCC > 80% on this independent test dataset. Furthermore, we have further demonstrated the superiority of our model on additional datasets. In addition, t-SNE and SHAP interpretation analysis demonstrated that it is crucial to use two channels for feature extraction and use the Attention mechanism for deep fusion, which helps the iACP-DFSRA to predict ACPs more effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贾福运完成签到,获得积分10
1秒前
柠檬要加冰完成签到 ,获得积分10
3秒前
3秒前
田様应助贾福运采纳,获得10
3秒前
4秒前
烂漫的寻冬完成签到,获得积分10
6秒前
丰富老鼠完成签到,获得积分10
6秒前
6秒前
7秒前
8秒前
10秒前
11秒前
Ava应助烂漫的寻冬采纳,获得10
11秒前
yshog发布了新的文献求助10
11秒前
谨慎的平凡完成签到,获得积分10
11秒前
TT发布了新的文献求助10
13秒前
嘻哈完成签到,获得积分10
14秒前
mgg完成签到,获得积分10
16秒前
博修发布了新的文献求助10
16秒前
广州队完成签到,获得积分10
16秒前
嘻哈发布了新的文献求助10
17秒前
18秒前
完美世界应助行无忧采纳,获得10
18秒前
superLmy完成签到 ,获得积分10
19秒前
搜集达人应助饱满的平安采纳,获得10
21秒前
peipei发布了新的文献求助10
22秒前
宁异勿同发布了新的文献求助10
22秒前
不如看海完成签到 ,获得积分10
22秒前
24秒前
24秒前
24秒前
28秒前
cdercder应助科研通管家采纳,获得10
28秒前
香蕉觅云应助科研通管家采纳,获得30
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
彭于晏应助科研通管家采纳,获得10
28秒前
28秒前
JamesPei应助科研通管家采纳,获得10
28秒前
cdercder应助科研通管家采纳,获得10
28秒前
28秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799165
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321911
捐赠科研通 3061287
什么是DOI,文献DOI怎么找? 1680191
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445