A Continuous Remaining Useful Life Prediction Method With Multistage Attention Convolutional Neural Network and Knowledge Weight Constraint

卷积神经网络 约束(计算机辅助设计) 计算机科学 人工智能 人工神经网络 机器学习 数学 几何学
作者
Jianghong Zhou,Yi Qin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3462723
摘要

The rotating machinery is continuously monitored in practical application. However, the historical life-cycle data cannot be always preserved due to the limited storage resource; meanwhile, the on-site computing platform cannot process a large number of monitoring samples. It brings a great challenge for the remaining useful life (RUL) prediction. Thus, continuous learning (CL) is introduced into RUL prediction model for achieving its knowledge accumulation and dynamic update. To improve the performance of continuous RUL prediction, this article presents a new RUL prediction methodology with a multistage attention convolutional neural network (MSACNN) and knowledge weight constraint (KWC). First, an improved multihead full-channel sight self-attention (MFCSSA) mechanism is proposed to capture the global degradation information across all channels. MSACNN is then constructed by embedding MFCSSA, squeeze-and-excitation (SE) mechanism, and convolutional block attention module (CBAM) into different stages of feature extraction, which enables it to capture the global degradation information and refine the feature representations progressively. The KWC mechanism based on the importance of weight parameters and gradient information is proposed and integrated into MSACNN to achieve the continuous RUL prediction task. The proposed KWC can effectively alleviate catastrophic forgetting in CL. Finally, the experimental results on the life-cycle bearing and gear datasets demonstrate that MSACNN has a higher accuracy than the existing prediction methods. Moreover, the KWC mechanism performs better than typical CL methods in retaining the previously learned knowledge while acquiring the new task knowledge. Therefore, the proposed methodology can be better applied to the continuous RUL prediction tasks than the advanced methods of the same kind.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
000完成签到,获得积分10
1秒前
1秒前
1秒前
乐乐应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
2秒前
板砖狗发布了新的文献求助10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
毕小竟发布了新的文献求助30
2秒前
ding应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
3秒前
3秒前
YamDaamCaa应助科研通管家采纳,获得30
3秒前
3秒前
3秒前
3秒前
WN发布了新的文献求助10
3秒前
3秒前
3秒前
852应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
4秒前
5秒前
6秒前
6秒前
圣晟胜发布了新的文献求助10
6秒前
辛L发布了新的文献求助10
7秒前
所所应助Ge采纳,获得10
7秒前
chaobada完成签到,获得积分10
7秒前
Ancy应助西早07采纳,获得10
7秒前
9秒前
9秒前
xiuwen发布了新的文献求助10
9秒前
10秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
植物基因组学(第二版) 1000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4095012
求助须知:如何正确求助?哪些是违规求助? 3633257
关于积分的说明 11516365
捐赠科研通 3343935
什么是DOI,文献DOI怎么找? 1837867
邀请新用户注册赠送积分活动 905408
科研通“疑难数据库(出版商)”最低求助积分说明 823160