代谢组
转录组
类黄酮
类黄酮生物合成
生物合成
干旱胁迫
生物
代谢组学
植物
水分胁迫
生物化学
生物信息学
基因
基因表达
抗氧化剂
作者
Xinghua Feng,Shiqie Bai,Lianxia Zhou,Yan Song,Sijin Jia,Qingxun Guo,Chunyu Zhang
标识
DOI:10.3390/ijms252011135
摘要
Blueberries (Vaccinium spp.) are extremely sensitive to drought stress. Flavonoids are crucial secondary metabolites that possess the ability to withstand drought stress. Therefore, improving the drought resistance of blueberries by increasing the flavonoid content is crucial for the development of the blueberry industry. To explore the underlying molecular mechanism of blueberry in adaptation to drought stress, we performed an integrated analysis of the metabolome and transcriptome of blueberry leaves under drought stress. We found that the most enriched drought-responsive genes are mainly involved in flavonoid biosynthesis and plant hormone signal transduction pathways based on transcriptome data and the main drought-responsive metabolites come from the flavonoid class based on metabolome data. The UDP-glucose flavonoid 3-O-glucosyl transferase (UFGT), flavonol synthase (FLS), and anthocyanidin reductase (ANR-2) genes may be the key genes for the accumulation of anthocyanins, flavonols, and flavans in response to drought stress in blueberry leaves, respectively. Delphinidin 3-glucoside and delphinidin-3-O-glucoside chloride may be the most important drought-responsive flavonoid metabolites. VcMYB1, VcMYBPA1, MYBPA1.2, and MYBPA2.1 might be responsible for drought-induced flavonoid biosynthesis and VcMYB14, MYB14, MYB102, and MYB108 may be responsible for blueberry leaf drought tolerance. ABA responsive elements binding factor (ABF) genes, MYB genes, bHLH genes, and flavonoid biosynthetic genes might form a regulatory network to regulate drought-induced accumulation of flavonoid metabolites in blueberry leaves. Our study provides a useful reference for breeding drought-resistant blueberry varieties.
科研通智能强力驱动
Strongly Powered by AbleSci AI