A deep learning-based method for the detection and segmentation of breast masses in ultrasound images

人工智能 乳腺超声检查 分割 深度学习 超声波 计算机视觉 计算机科学 放射科 医学 乳腺癌 乳腺摄影术 内科学 癌症
作者
Wanqing Li,Xianjun Ye,Xuemin Chen,Xianxian Jiang,Yidong Yang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (15): 155027-155027
标识
DOI:10.1088/1361-6560/ad61b6
摘要

Abstract Objective. Automated detection and segmentation of breast masses in ultrasound images are critical for breast cancer diagnosis, but remain challenging due to limited image quality and complex breast tissues. This study aims to develop a deep learning-based method that enables accurate breast mass detection and segmentation in ultrasound images. Approach. A novel convolutional neural network-based framework that combines the You Only Look Once (YOLO) v5 network and the Global-Local (GOLO) strategy was developed. First, YOLOv5 was applied to locate the mass regions of interest (ROIs). Second, a Global Local-Connected Multi-Scale Selection (GOLO-CMSS) network was developed to segment the masses. The GOLO-CMSS operated on both the entire images globally and mass ROIs locally, and then integrated the two branches for a final segmentation output. Particularly, in global branch, CMSS applied Multi-Scale Selection (MSS) modules to automatically adjust the receptive fields, and Multi-Input (MLI) modules to enable fusion of shallow and deep features at different resolutions. The USTC dataset containing 28 477 breast ultrasound images was collected for training and test. The proposed method was also tested on three public datasets, UDIAT, BUSI and TUH. The segmentation performance of GOLO-CMSS was compared with other networks and three experienced radiologists. Main results. YOLOv5 outperformed other detection models with average precisions of 99.41%, 95.15%, 93.69% and 96.42% on the USTC, UDIAT, BUSI and TUH datasets, respectively. The proposed GOLO-CMSS showed superior segmentation performance over other state-of-the-art networks, with Dice similarity coefficients (DSCs) of 93.19%, 88.56%, 87.58% and 90.37% on the USTC, UDIAT, BUSI and TUH datasets, respectively. The mean DSC between GOLO-CMSS and each radiologist was significantly better than that between radiologists ( p < 0.001). Significance. Our proposed method can accurately detect and segment breast masses with a decent performance comparable to radiologists, highlighting its great potential for clinical implementation in breast ultrasound examination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
小可爱发布了新的文献求助10
5秒前
7秒前
丘比特应助duzhi采纳,获得10
8秒前
科研通AI2S应助海德堡采纳,获得10
8秒前
科研通AI5应助安静的雁兰采纳,获得10
8秒前
觅海发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
purple发布了新的文献求助10
12秒前
13秒前
劉平果完成签到 ,获得积分10
13秒前
可爱的函函应助123采纳,获得10
14秒前
小贾baby发布了新的文献求助10
14秒前
科研通AI5应助Dr.c采纳,获得10
14秒前
踔厉完成签到 ,获得积分10
17秒前
17秒前
18秒前
怕孤独的冰淇淋完成签到,获得积分10
20秒前
20秒前
hanhan发布了新的文献求助10
21秒前
思源应助daidai采纳,获得10
22秒前
zzz完成签到 ,获得积分10
23秒前
23秒前
24秒前
123发布了新的文献求助10
26秒前
28秒前
Androc完成签到,获得积分10
29秒前
wanci应助小可爱采纳,获得50
29秒前
Dr.c发布了新的文献求助10
30秒前
30秒前
xuli21315完成签到,获得积分10
31秒前
美满听白完成签到,获得积分10
32秒前
FashionBoy应助明理迎曼采纳,获得10
33秒前
酷波er应助muqianyaowanan采纳,获得30
34秒前
35秒前
今后应助Su采纳,获得10
35秒前
daidai发布了新的文献求助10
35秒前
汉堡包应助hh采纳,获得10
37秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802384
求助须知:如何正确求助?哪些是违规求助? 3348043
关于积分的说明 10336044
捐赠科研通 3063943
什么是DOI,文献DOI怎么找? 1682320
邀请新用户注册赠送积分活动 808035
科研通“疑难数据库(出版商)”最低求助积分说明 763997