分割
掷骰子
计算机科学
人工智能
残余物
模式识别(心理学)
网(多面体)
心室
相(物质)
算法
医学
数学
心脏病学
物理
几何学
量子力学
作者
Kai Wang,Hirotaka Hachiya,Haiyuan Wu
摘要
ABSTRACT The interpretation of cardiac function using echocardiography requires a high level of diagnostic proficiency and years of experience. This study proposes a multi‐fusion residual attention U‐Net, MURAU‐Net, to construct automatic segmentation for evaluating cardiac function from echocardiographic video. MURAU‐Net has two benefits: (1) Multi‐fusion network to strengthen the links between spatial features. (2) Inter‐frame links can be established to augment the temporal coherence of sequential image data, thereby enhancing its continuity. To evaluate the effectiveness of the proposed method, we performed nine‐fold cross‐validation using CAMUS dataset. Among state‐of‐the‐art methods, MURAU‐Net achieves highly competitive score, for example, Dice similarity of 0.952 (ED phase) and 0.931 (ES phase) in , 0.966 (ED phase) and 0.957 (ES phase) in , and 0.901 (ED phase) and 0.917 (ES phase) in , respectively. It also achieved the Dice similarity of 0.9313 in the EchoNet‐Dynamic dataset for the overall left ventricle segmentation. In addition, we show MURAU‐Net can accurately segment multiclass cardiac ultrasound videos and output the animation of segmentation results using the original two‐chamber cardiac ultrasound dataset MUCO.
科研通智能强力驱动
Strongly Powered by AbleSci AI