清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A novel multi-objective optimization model for the vehicle routing problem with drone delivery and dynamic flight endurance

无人机 车辆路径问题 工程类 计算机科学 布线(电子设计自动化) 航空学 模拟 运筹学 汽车工程 嵌入式系统 遗传学 生物
作者
Shuai Zhang,Siliang Liu,Weibo Xu,Wanru Wang
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:173: 108679-108679 被引量:36
标识
DOI:10.1016/j.cie.2022.108679
摘要

• A novel optimization model for the vehicle routing problem with drone delivery is proposed. • Economic and environmental objectives are optimized simultaneously in the model. • The flight endurance of drones is modelled dynamically with their loading rate. • An extended non-dominated sorting genetic algorithm is presented to solve the model. With growing environmental concerns and tough carbon–neutral objectives, logistics providers have to consider not only economic benefits but also environmental impact in the delivery process. This study proposes a novel multi-objective optimization model for the vehicle routing problem with drone delivery. The proposed model involves improving delivery efficiency and reducing environmental impact by extending the conventional ground vehicle (i.e. truck) delivery model with the implementation of drone delivery as well as the optimization of the total energy consumption of trucks. Drones need to collaborate with trucks to serve customers because of their limited flight endurance. Moreover, the fact that flight endurance is dynamic and influenced by the loading rate of drones is also considered to satisfy practical application scenarios. An extended non-dominated sorting genetic algorithm is presented to solve the proposed model. A new encoding and decoding method is incorporated to represent multiple feasible routes of drones and trucks, several crossover and mutation operators are integrated to accelerate the algorithmic convergence, and a multi-dimensional local search strategy is employed to enhance the diversity of population. Finally, the experimental results demonstrate that the presented algorithm is effective in obtaining high-quality non-dominated solutions by comparing it with three other baseline multi-objective algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彗星入梦完成签到 ,获得积分10
16秒前
Benhnhk21发布了新的文献求助10
24秒前
woxinyouyou完成签到,获得积分0
41秒前
49秒前
安琦发布了新的文献求助10
54秒前
bible完成签到,获得积分10
1分钟前
汀上白沙完成签到,获得积分10
1分钟前
研友_nxw2xL完成签到,获得积分10
3分钟前
科研通AI5应助太阳花采纳,获得10
3分钟前
muriel完成签到,获得积分10
3分钟前
3分钟前
共享精神应助科研通管家采纳,获得10
3分钟前
小二郎应助科研通管家采纳,获得10
3分钟前
英俊的铭应助科研通管家采纳,获得10
3分钟前
Dou完成签到,获得积分10
3分钟前
所所应助Benhnhk21采纳,获得10
3分钟前
太阳花发布了新的文献求助10
3分钟前
沿途有你完成签到 ,获得积分10
3分钟前
naczx完成签到,获得积分0
3分钟前
Spring完成签到,获得积分10
3分钟前
3分钟前
3分钟前
Benhnhk21发布了新的文献求助10
3分钟前
3分钟前
太阳花发布了新的文献求助10
4分钟前
多亿点完成签到 ,获得积分10
4分钟前
天天快乐应助太阳花采纳,获得10
4分钟前
4分钟前
太阳花发布了新的文献求助10
4分钟前
阿明完成签到,获得积分10
5分钟前
bo完成签到 ,获得积分10
5分钟前
灵巧的十八完成签到 ,获得积分10
5分钟前
纯情的寻绿完成签到 ,获得积分10
5分钟前
碧蓝丹烟完成签到 ,获得积分10
6分钟前
心灵美语兰完成签到 ,获得积分10
6分钟前
drughunter完成签到,获得积分10
7分钟前
vbnn完成签到 ,获得积分10
7分钟前
汉堡包应助太阳花采纳,获得10
7分钟前
7分钟前
太阳花发布了新的文献求助10
8分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800936
求助须知:如何正确求助?哪些是违规求助? 3346489
关于积分的说明 10329439
捐赠科研通 3063031
什么是DOI,文献DOI怎么找? 1681328
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763714