Adaptive Spatiotemporal Transformer Graph Network for Traffic Flow Forecasting by IoT Loop Detectors

计算机科学 数据挖掘 变压器 探测器 实时计算 人工智能 工程类 电信 电气工程 电压
作者
Boyu Huang,Haowen Dou,Yu Luo,Junchao Li,Jiaqi Wang,Teng Zhou
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (2): 1642-1653 被引量:32
标识
DOI:10.1109/jiot.2022.3209523
摘要

Extensive traffic flow data are received from the loop detector networks every second, which requires us to develop an effective and efficient algorithm to predict future traffic flow. However, dynamic traffic conditions on a road are not just influenced by sequential patterns in the temporal dimension, but also by other roadways in the spatial dimension. Although many successful models have been developed in previous studies to forecast future traffic flows, most of them have shortcomings in modeling spatial and temporal dependencies. In this article, we focus on spatial-temporal factors and propose a new adaptive spatial-temporal transformer graph network (ASTTGN) to improve the accuracy of traffic forecasting by jointly modeling the spatial-temporal information of road networks. Specifically, we propose an adaptive spatial-temporal transformer module, which contains two developed adaptive transformer modules for capturing dynamic spatial dependence and temporal dependence across multiple time steps, respectively. Finally, feature fusion is performed through a gated feature aggregation layer to simulate the effect of complex spatial-temporal factors on traffic conditions. In particular, the multihead attention mechanism employed by the transformer can effectively explore the potential spatial-temporal dependence patterns in different subspaces. Experimental results on two real-world traffic data sets demonstrate the superiority of the proposed model compared to existing techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柒柒完成签到,获得积分10
刚刚
刚刚
cmc发布了新的文献求助10
刚刚
1秒前
遂安完成签到,获得积分10
1秒前
共情发布了新的文献求助10
1秒前
一二三发布了新的文献求助10
3秒前
huangyurong发布了新的文献求助50
3秒前
潇洒静芙完成签到 ,获得积分10
3秒前
梦XING发布了新的文献求助10
3秒前
思源应助小鲨鱼采纳,获得10
3秒前
5秒前
你好应助竹子采纳,获得10
5秒前
早早发布了新的文献求助10
6秒前
来日昭昭应助包容的冷安采纳,获得10
6秒前
量子星尘发布了新的文献求助10
8秒前
搞怪哑铃发布了新的文献求助80
9秒前
9秒前
cctv18应助2032jia采纳,获得10
10秒前
10秒前
yyy关注了科研通微信公众号
10秒前
小老三发布了新的文献求助10
11秒前
激动的砖家完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
15秒前
糖_完成签到 ,获得积分10
15秒前
喆喆发布了新的文献求助10
16秒前
小鲨鱼发布了新的文献求助10
17秒前
IDHNAPHO发布了新的文献求助10
18秒前
xk要发nature子刊完成签到,获得积分10
19秒前
20秒前
888完成签到,获得积分10
21秒前
CCsouljump完成签到 ,获得积分10
23秒前
23秒前
李爱国应助123456采纳,获得10
24秒前
24秒前
qxz完成签到,获得积分10
25秒前
SciGPT应助勤劳的音响采纳,获得10
25秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
The User Experience Team of One (2nd Edition) 600
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881205
求助须知:如何正确求助?哪些是违规求助? 3423660
关于积分的说明 10735141
捐赠科研通 3148631
什么是DOI,文献DOI怎么找? 1737213
邀请新用户注册赠送积分活动 838743
科研通“疑难数据库(出版商)”最低求助积分说明 784058