化学
三乙醇胺
催化作用
环氧丙烷
环氧化物
选择性
碘化物
产量(工程)
碳酸丙烯酯
有机化学
共聚物
环氧乙烷
材料科学
分析化学(期刊)
电极
物理化学
电化学
冶金
聚合物
作者
Benneng Xiao,Jian Sun,Jinquan Wang,Chunyan Liu,Weiguo Cheng
标识
DOI:10.1080/00397911.2012.754471
摘要
Abstract A catalytic system of triethanolamine/potassium iodide (KI) was proved to be efficient for the chemical fixation of CO2 with epoxide. It was found that triethanolamine with dual function could activate both CO2 and epoxides. Effects of parameters such as catalyst molar ratio and amount, reaction time, pressure, and temperature were studied systematically. As a result, 99% propylene oxide conversion as well as 99% propylene carbonate selectivity could be obtained under the optimal reaction condition. Furthermore, the catalyst was found to be applicable to a variety of terminal epoxides, providing the corresponding cyclic carbonates in good yields and selectivity. Moreover, the catalyst could be reused five times without loss of activity. This work presents an example of a cheap and efficient catalyst for the chemical fixation of CO2 to high-value chemicals, which could help to improve the catalytic efficiency and decrease cost of products for larger applications. [Supplementary materials are available for this article. Go to the publisher's online edition of Synthetic Communications® for the following free supplemental resource: Full experimental and spectral details.]
科研通智能强力驱动
Strongly Powered by AbleSci AI