亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Design-to-Device Pipeline for Data-Driven Materials Discovery

管道(软件) 数据科学 计算机科学 程序设计语言
作者
Jacqueline M. Cole
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:53 (3): 599-610 被引量:98
标识
DOI:10.1021/acs.accounts.9b00470
摘要

The world needs new materials to stimulate the chemical industry in key sectors of our economy: environment and sustainability, information storage, optical telecommunications, and catalysis. Yet, nearly all functional materials are still discovered by "trial-and-error", of which the lack of predictability affords a major materials bottleneck to technological innovation. The average "molecule-to-market" lead time for materials discovery is currently 20 years. This is far too long for industrial needs, as highlighted by the Materials Genome Initiative, which has ambitious targets of up to 4-fold reductions in average molecule-to-market lead times. Such a large step change in progress can only be realistically achieved if one adopts an entirely new approach to materials discovery. Fortunately, a fundamentally new approach to materials discovery has been emerging, whereby data science with artificial intelligence offers a prospective solution to speed up these average molecule-to-market lead times.This approach is known as data-driven materials discovery. Its broad prospects have only recently become a reality, given the timely and major advances in "big data", artificial intelligence, and high-performance computing (HPC). Access to massive data sets has been stimulated by government-regulated open-access requirements for data and literature. Natural-language processing (NLP) and machine-learning (ML) tools that can mine data and find patterns therein are becoming mainstream. Exascale HPC capabilities that can aid data mining and pattern recognition and also generate their own data from calculations are now within our grasp. These timely advances present an ideal opportunity to develop data-driven materials-discovery strategies to systematically design and predict new chemicals for a given device application.This Account shows how data science can afford materials discovery via a four-step "design-to-device" pipeline that entails (1) data extraction, (2) data enrichment, (3) material prediction, and (4) experimental validation. Massive databases of cognate chemical and property information are first forged from "chemistry-aware" natural-language-processing tools, such as ChemDataExtractor, and enriched using machine-learning methods and high-throughput quantum-chemical calculations. New materials for a bespoke application can then be predicted by mining these databases with algorithmic encodings of relationships between chemical structures and physical properties that are known to deliver functional materials. These may take the form of classification, enumeration, or machine-learning algorithms. A data-mining workflow short-lists these predictions to a handful of lead candidate materials that go forward to experimental validation. This design-to-device approach is being developed to offer a roadmap for the accelerated discovery of new chemicals for functional applications. Case studies presented demonstrate its utility for photovoltaic, optical, and catalytic applications. While this Account is focused on applications in the physical sciences, the generic pipeline discussed is readily transferable to other scientific disciplines such as biology and medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
落后的静竹完成签到,获得积分10
7秒前
欣欣发布了新的文献求助20
8秒前
可乐完成签到,获得积分20
20秒前
可乐驳回了田様应助
27秒前
li完成签到 ,获得积分10
35秒前
慈祥的丹寒完成签到 ,获得积分10
41秒前
shame完成签到 ,获得积分10
41秒前
44秒前
丘比特应助一点采纳,获得10
57秒前
btsforever完成签到 ,获得积分0
58秒前
无尘完成签到 ,获得积分0
1分钟前
1分钟前
zz完成签到,获得积分10
1分钟前
ChloeD完成签到,获得积分10
1分钟前
gura完成签到 ,获得积分10
1分钟前
一点发布了新的文献求助10
1分钟前
Wei完成签到 ,获得积分0
1分钟前
彭于晏应助等乙天采纳,获得10
1分钟前
1分钟前
美罗培南完成签到,获得积分0
1分钟前
1分钟前
NexusExplorer应助小李医生采纳,获得10
1分钟前
等乙天发布了新的文献求助10
1分钟前
1分钟前
小李医生完成签到,获得积分10
1分钟前
仔仔完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
田様应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得30
2分钟前
2分钟前
2分钟前
小李医生发布了新的文献求助10
2分钟前
赘婿应助一点采纳,获得10
2分钟前
专注的凡蕾完成签到 ,获得积分10
2分钟前
清欢完成签到 ,获得积分10
2分钟前
2分钟前
一点发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422398
求助须知:如何正确求助?哪些是违规求助? 4537295
关于积分的说明 14157041
捐赠科研通 4453879
什么是DOI,文献DOI怎么找? 2443106
邀请新用户注册赠送积分活动 1434452
关于科研通互助平台的介绍 1411553