Intelligent Imaging in Nuclear Medicine: the Principles of Artificial Intelligence, Machine Learning and Deep Learning

人工智能 卷积神经网络 深度学习 机器学习 人工神经网络 核医学 分割 医学 临床实习 计算机科学 模式识别(心理学) 家庭医学
作者
Geoffrey Currie,Eric Rohren
出处
期刊:Seminars in Nuclear Medicine [Elsevier BV]
卷期号:51 (2): 102-111 被引量:49
标识
DOI:10.1053/j.semnuclmed.2020.08.002
摘要

The emergence of artificial intelligence (AI) in nuclear medicine has occurred over the last 50 years but more recent developments in machine learning (ML) and deep learning (DL) have driven new capabilities of AI in nuclear medicine. In nuclear medicine, the artificial neural network (ANN) is the backbone of ML and DL. The inputs may be radiomic features that have been extracted from the image files or, if using a convolutional neural network (CNN), may be the images themselves. AI in nuclear medicine re-engineers and re-imagines clinical and research capabilities. An understanding of the principles of AI, ML and DL contextualised to nuclear medicine allows richer engagement in clinical and research applications, and capacity for problem solving where required. Simple applications of ML include quality assurance, risk assessment, business analytics and rudimentary classifications. More complex applications of DL for detection, localisation, classification, segmentation, quantitation and radiomic feature extraction using CNNs can be applied to general nuclear medicine, SPECT, PET, CT and MRI. There are also applications of ANNs and ML that allow small datasets (and larger ones) to be analysed in parallel to conventional statistical analysis. AI has assimilated into the clinical and research practice of nuclear medicine with little disruption. The emergence of ML and DL applications, however, has produced a seismic significant shift in the clinical and research landscape that demands at least rudimentary understanding of the principles of AI, ANNs and CNNs among nuclear medicine professionals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
月月鸟完成签到,获得积分20
3秒前
七七完成签到,获得积分10
3秒前
5秒前
6秒前
zfm发布了新的文献求助10
6秒前
7秒前
10秒前
科研通AI5应助娃哈哈采纳,获得10
11秒前
科研通AI5应助jin采纳,获得10
11秒前
科研通AI2S应助zhiwei采纳,获得10
11秒前
碎冰蓝发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
Tsct完成签到,获得积分20
12秒前
12秒前
13秒前
zzjjyy发布了新的文献求助10
13秒前
cdercder应助枫叶采纳,获得30
16秒前
科研兄发布了新的文献求助10
16秒前
zfm完成签到,获得积分10
17秒前
17秒前
18秒前
daidai发布了新的文献求助10
18秒前
Zbzb发布了新的文献求助10
18秒前
Andy完成签到,获得积分10
18秒前
NNUsusan完成签到,获得积分10
19秒前
FashionBoy应助Zbzb采纳,获得10
22秒前
啊娴仔完成签到,获得积分10
23秒前
23秒前
chengzhi发布了新的文献求助30
25秒前
25秒前
lwg完成签到,获得积分10
26秒前
科研通AI5应助高挑的问梅采纳,获得10
26秒前
Very发布了新的文献求助10
27秒前
30秒前
31秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802431
求助须知:如何正确求助?哪些是违规求助? 3348058
关于积分的说明 10336202
捐赠科研通 3063960
什么是DOI,文献DOI怎么找? 1682338
邀请新用户注册赠送积分活动 808052
科研通“疑难数据库(出版商)”最低求助积分说明 763997