脂肪性肝炎
脂肪肝
炎症
脂质代谢
纤维化
医学
内科学
肝纤维化
发病机制
内分泌学
疾病
作者
Marta B. Afonso,Pedro M. Rodrigues,Miguel Mateus‐Pinheiro,André L. Simão,Maria Manuela Gaspar,Amine Majdi,Enara Arretxe,Cristina Alonso,Álvaro Santos‐Laso,Raúl Jiménez-Agüero,Emma Eizaguirre,Luís Bujanda,María Jesús Pareja,Jesús M. Bañales,Vlad Ratziu,Jérémie Gautheron,Rui E. Castro,Cecília M. P. Rodrigues
出处
期刊:Gut
[BMJ]
日期:2020-12-24
卷期号:70 (12): 2359-2372
被引量:85
标识
DOI:10.1136/gutjnl-2020-321767
摘要
Objective Receptor-interacting protein kinase 3 (RIPK3) is a key player in necroptosis execution and an emerging metabolic regulator, whose contribution to non-alcoholic fatty liver disease (NAFLD) is controversial. We aimed to clarify the impact of RIPK3 signalling in the pathogenesis of human and experimental NAFLD. Design RIPK3 levels were evaluated in two large independent cohorts of patients with biopsy proven NAFLD diagnosis and correlated with clinical and biochemical parameters. Wild-type (WT) or Ripk3 -deficient ( Ripk3 −/− ) mice were fed a choline-deficient L-amino acid-defined diet (CDAA) or an isocaloric control diet for 32 and 66 weeks. Results RIPK3 increased in patients with non-alcoholic steatohepatitis (NASH) in both cohorts, correlating with hepatic inflammation and fibrosis. Accordingly, Ripk3 deficiency ameliorated CDAA-induced inflammation and fibrosis in mice at both 32 and 66 weeks. WT mice on the CDAA diet for 66 weeks developed preneoplastic nodules and displayed increased hepatocellular proliferation, which were reduced in Ripk3 −/− mice. Furthermore, Ripk 3 deficiency hampered tumourigenesis. Intriguingly, Ripk3 −/− mice displayed increased body weight gain, while lipidomics showed that deletion of Ripk3 shifted hepatic lipid profiles. Peroxisome proliferator-activated receptor γ (PPARγ) was increased in Ripk3 −/− mice and negatively correlated with hepatic RIPK3 in patients with NAFLD. Mechanistic studies established a functional link between RIPK3 and PPARγ in controlling fat deposition and fibrosis. Conclusion Hepatic RIPK3 correlates with NAFLD severity in humans and mice, playing a key role in managing liver metabolism, damage, inflammation, fibrosis and carcinogenesis. Targeting RIPK3 and its intricate signalling arises as a novel promising approach to treat NASH and arrest disease progression.
科研通智能强力驱动
Strongly Powered by AbleSci AI