亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Simplified protocol for whole‐body Patlak parametric imaging with 18F‐FDG PET/CT: Feasibility and error analysis

人口 全身成像 参数统计 核医学 正电子发射断层摄影术 医学影像学 迭代重建 计算机科学 剂量学 数学 人工智能 医学 统计 环境卫生
作者
Shulin Yao,Tao Feng,Yizhang Zhao,Runze Wu,Ruimin Wang,Shina Wu,Can Li,Baixuan Xu
出处
期刊:Medical Physics [Wiley]
卷期号:48 (5): 2160-2169 被引量:24
标识
DOI:10.1002/mp.14187
摘要

Purpose Parametric imaging using the Patlak model has been shown to provide improved lesion detectability and specificity. The Patlak model requires both tissue time–activity curves (TACs) after equilibrium and knowledge of the input function from the start of injection. Therefore, the conventional dynamic scanning protocol typically starts from the radiotracer injection all the way to equilibrium. In this paper, we propose the use of hybrid population‐based and model‐based input function estimation and evaluate its use for whole‐body Patlak analysis, in order to reduce the total scan time and simplify clinical Patlak parametric imaging protocols. Possible quantitative errors caused by the simplified scanning protocol were also analyzed both theoretically and with the use of clinical data. Materials and methods Clinical data from 24 patients referred for tumor staging were included in this study. The patients underwent a whole‐body dynamic PET study, 20 min after FDG injection (0.13 mCi/kg). The proposed whole‐body scanning protocol includes 6 passes with 4–5 bed positions, depending on the size of the patient, with 2 min for each bed position. An input function from the literature was selected as the shape of the population‐based input function. The descending aorta from the corresponding CT image was segmented and applied on the reconstructed dynamic PET images to acquire an image‐based input function, which was later fitted using an exponential model. Due to the late scan time, only the later portion of the input function was available, which was used to scale the population‐based input function. The hybrid input function was used to derive the whole‐body Patlak images. Assuming a given error in the population‐based input function, its influence on the final Patlak images were also derived theoretically and verified using the clinical data sets. Finally, the image quality of the reconstructed Patlak slope image was evaluated by an experienced radiologist in four different aspects: image artifacts, image noise, lesion sharpness, and lesion detectability. Results It was found that errors in the population‐based input function only affect the absolute scale of the Patlak slope image. The induced error is proportional to the percentage area‐under‐curve (AUC) error in the input function. These findings were also confirmed by numerical analysis. The predicted global scale was in good agreement with results from both image‐based Patlak and direct Patlak approach. The fractions of the AUC from the early portion population‐based input function were also found to be around 18% of the total AUC of the input function, further limiting the propagation of quantitation error from population‐based input function to the final Patlak slope image. The reconstructed Patlak images were also found by the radiologist to provide excellent confidence in lesion detection tasks. Conclusions We have proposed a simplified whole‐body scanning protocol that utilizes both population‐based input function and model‐based input function. The error from the population‐based function was found to only affect the global scale and the overall quantitative impact can be predicted using our proposed formulas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
迅速冰岚发布了新的文献求助10
6秒前
满意的晓啸完成签到,获得积分10
7秒前
dd完成签到,获得积分10
12秒前
14秒前
迅速冰岚完成签到,获得积分10
18秒前
汉堡包应助科研通管家采纳,获得10
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
情怀应助科研通管家采纳,获得30
19秒前
19秒前
25秒前
Jemma完成签到 ,获得积分10
28秒前
jyy完成签到,获得积分10
29秒前
38秒前
文艺映阳完成签到,获得积分10
43秒前
51秒前
Lucas应助隐形的雁采纳,获得10
51秒前
53秒前
1hhr发布了新的文献求助10
55秒前
leyellows完成签到 ,获得积分10
55秒前
vv完成签到 ,获得积分10
59秒前
量子星尘发布了新的文献求助30
1分钟前
1分钟前
在水一方应助1hhr采纳,获得10
1分钟前
1分钟前
Bingtao_Lian完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
起风了完成签到 ,获得积分10
1分钟前
欣欣完成签到 ,获得积分10
1分钟前
yydragen应助lyz采纳,获得50
1分钟前
盛事不朽完成签到 ,获得积分10
1分钟前
在水一方应助研友_Zlx3aZ采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
Pericardium发布了新的文献求助10
2分钟前
Bond完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助150
2分钟前
LL发布了新的文献求助30
2分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4255464
求助须知:如何正确求助?哪些是违规求助? 3788254
关于积分的说明 11888478
捐赠科研通 3438177
什么是DOI,文献DOI怎么找? 1886801
邀请新用户注册赠送积分活动 937933
科研通“疑难数据库(出版商)”最低求助积分说明 843645